Zero-Copy Data Movement M echanisms for UVM

Charles D. Cranor Gurudatta M. Parulkar

Department of Computer Science
Washington University

St. Louis, MO 63130
{chuck, guru}@rl .wustl . edu

Abstract heart of a modern operating system — the virtual memory

We introduce UVM, a new virtual memory system specif- system. One common approach to_reducing_data copying is
ically designed to provide the 1/0O and IPC systems WithFO focus on |/O_and lP_C _system_de5|gn and either rely on ex-
a range of flexible data movement mechanisms. Implel_stmg mechanisms within the virtual memory system (with

mented in the NetBSD operating system, UVM completelypOSSible superficial changes) or to completely bypass the
replaces the Mach based 4.4BSD VM system. UVM pro_high—IeveI virtual memory system and access the hardware

vides three new virtual memory based data movemen! irectly [2, 7, 9, 15]. In contrast, our approach s to focus on
mechanisms: page loanout, page transfer, and map e 1e internal design of the virtual memory system and inte-

try passing. Page loanout and page transfer allow pro_grate highly-flexible virtual memory based data movement

cesses to efficiently lend out and receive pages of memor{© it We introduce UVM [6], a new virtual memory sys-
thus providing the operating system with data movemen em specifically designed to provide the 1/0 and IPC sys-

mechanisms with page-level granularity. Map entry pass;ems with a range of flexible data movement mechanisms.

ing allows processes to exchange chunks of their virtual 'MpPlemented in the NetBSD operating system, UVM
address space, thus providing the operating system with G°MPletely replaces the Mach based 4.4BSD VM system.
data movement mechanism with mapping-level granular-UVM prowdes_three new virtual memory based data move-
ity. In addition to featuring flexible data movement mech-MeNt mechanisms: page loanout, page transfer, and map
anisms, UVM also improves virtual memory performance€Ntry passing. Page loanout and page transfer allow pro-

over BSD VM in traditional areas such as forking and pa-CESS€S to efficiently lend out and receive pages of memory,
geout. thus providing the operating system with data movement

mechanisms with page-level granularity. Map entry pass-
) ing allows processes to exchange chunks of their virtual
1 Introduction address space, thus providing the operating system with a
data movement mechanism with mapping-level granular-
New computer applications in areas such as multimediay |n addition to featuring flexible data movement mech-
imaging, and distributed computing expect the highest pergnisms. UVM also improves virtual memory performance
formance from an operating system’s I/O and IPC systemssyer BSD VM in traditional areas such as forking and pa-
Although hardware speeds have improved, the operatingeout,
system has had a hard time keeping up [11, 14]. Unnec- |, this paper we present the design, implementation, and
essary data copying in traditional Unix-like operating sys-measurement of UVM’s data movement mechanisms. In
tems has been one of the barriers to high performance. Bul§gction 2 we present background and related work. Sec-
copying of large chunks of data is expensive — the procesgion, 3 contains a high-level overview of UVM. Section 4
sor must spend its time copying the data from the sourcgqntains a more detailed description of UVM’s data move-
buffer to the destination one word at a time. The speed of,ent mechanisms. In Section 5 we present performance

this process is limited by the bandwidth of main memory.easurements for these mechanisms. Finally, we conclude
Also, as these buffers are often larger than a processoris, section 6.

cache, copying them causes much of the useful informa-
tion stored in the cache to be flushed out to make room for
the data being copied. 2 Background and Related Work
Unnecessary data copies are often reduced by using a
system’s virtual memory hardware to share or remap datén this section we present background information on the
buffers. The virtual memory hardware is controlled by thevirtual memory system that UVM replaces: BSD VM. We

also examine other related work. Such work falls into two2.2 Related Virtual Memory Systems

categories: virtual memory system designs, and I/O and))
IPC system designs. The Mach virtual memory system is used for memory man-

agement and IPC in the Mach microkernel developed at

Carnegie Mellon University [16, 19]. BSD VM is a sim-
21 BSD VM Overview plified version of Mach VM. Mach VM avoids data copy-

ing by using two mechanisms: copy-on-write and “out-of-
The BSD VM system is divided into two layers: a line” IPC messages. Mach uses a more complex version
large machine-independent layer, and a smaller machinef the BSD VM object chaining mechanism for copy-on-
dependent layer. The machine-independent code is sharettite, and thus suffers from problems similar to the ones
by all BSD-supported processors and contains the code thdescribed in Section 2.1. Mach’s “out-of-line” IPC mes-
performs the high-level functions of the VM system. The sage passing mechanism allows processes to pass chunks
machine-dependent code is called the “pmap” (for physef virtual memory between themselves without data copies.
ical map) layer, and it handles the lower-level details ofThis provides mapping-level granularity and is similar to
programming a processor’s MMU. Each architecture supUVM'’s map entry passing mechanism. This mechanism
ported by the operating system must have its own pmapvas found to be insufficient for certain types of IPC and
module. Each layer of the VM system does its own level oflater versions of Mach were modified to allow a list of busy
mapping. The machine-independent layer maps “memorpages to be extracted from a process and sent as a message
objects” (usually files) into the virtual address space of g2]. Further optimizations along these lines allow pages to
process or the kernel. The machine-dependent layer doé to be pinned in memory rather than being marked busy.
not know about higher-level concepts such as memory obwhile this approach does provide page-level granularity, it
jects; it only knows how to map physical pages of memoryis not as flexible as UVM’s page loanout mechanism, as
into a virtual address space. all copy-on-write operations must be done through Mach'’s

One important aspect of the VM system is how it handlesbulky object-chaining mechanism. Additionally, Mach’s
memory objects that are mapped copy-on-write. In a copy}PC operations cause unnecessary map fragmentation when
on-write mapping, changes made to an object’s mappeéxtracting memory for page based out-of-line messages.
pages are not shared — they are private to the process thatThe FreeBSD virtual memory system is an improved
made the changes. The BSD VM system manages copyersion of the BSD VM system [8]. Work on FreeBSD VM
on-write mappings of VM objects by using “shadow ob- has focused on a number of areas including simplifying
jects.” A shadow object is an anonymous memory objectata structure management, data caching, and efficient pag-
that contains the modified pages of the copy-on-write obing algorithms. FreeBSD VM’s data structures are simi-
ject it is shadowing. The object being shadowed can be &ar to BSD VM’s data structures, although some structures
file object or another shadow object. Each time an object ihiave been eliminated. While FreeBSD retains Mach-style
copy-on-write copied, a new shadow object is created foshadow object chaining for copy-on-write, the swap mem-
it. A linked list of objects shadowing each other is called ory leaks associated with BSD VM'’s poor handling of the
a “shadow object chain.” The final object on the chain isobject collapse problem have been addressed. Many of
the object that was originally copy-on-write copied. To de-FreeBSD’s improvements in the areas of data caching and
termine which page of memory should be mapped into gaging algorithms are applicable to UVM, thus FreeBSD
process, the object chain must be searched. will be a good reference for future work on UVM in these
There are several problems with using shadow objecareas. FreeBSD does not have UVM-style features such

chains for copy-on-write. First, it complicates the pageas page loanout and page transfer. These features could
fault routine by requiring it to handle arbitrary length object be added to FreeBSD with some difficulty (due to the use
chains. The fault routine must properly protect the objectof object chaining). Alternatively object chaining could be
chain in order to avoid race conditions. Second, if an ob-€liminated from FreeBSD and UVM features added.
ject chain grows too long it will slow searches and waste The SunOS4 virtual memory system (also used in So-
both kernel and swap space. In order to avoid long objeclaris) is a modern VM system that was designed to re-
chains, BSD VM uses a complex “object collapse” strategyplace the 4.3BSD VM system that appeared in SunOS3
that attempts to compress object chains by merging objec{4.0, 13]. SunOS VM avoids data copying through a copy-
together. The object collapse code has limitations that cann-write mechanism based on individual pages of anony-
cause significant performance problems in BSD in certairmous memory (anons) grouped into anonymous memory
cases. Third, the partial unmapping of a copy-on-write areanaps (amaps). UVM uses a similar scheme for copy-on-
of memory does not free any memory resources associategrite, however there are some key differences. First, in
with the inaccessible unmapped area. These resources d&M the anon is a general purpose virtual memory ab-
held until the copy-on-write area of memory is completely straction used in both copy-on-write and data passing. In
unmapped. This can cause a condition known as a “swafunOS the anon is not a generalized abstraction and is lim-
memory leak.” ited to certain types of mappings that require copy-on-write

or zero-fill memory. It is not used for data passing. Sec-2.3 Related 1/0 and IPC Subsystems
ond, UVM allows processes to share amap-based copy-on-))
write regions with other processes or the kernel. This ig" this section we examine research on 1/O and IPC sub-
used in map entry passing and to support Mach-style mensyStems that can take advantage of services offered by vir-
ory inheritance. SunOS lacks this feature. Third, UvM's U@l memory systems to reduce data movement overheads.
amap data structure contains additional indexes to speeffhile this research shares some of the same goals as UVM,
up operations on sparsely populated amaps. Finally, aggrappr_oach is different. In UVM we are interested in cre-
part of its page loanout mechanism, UVM allows a page?ting aw_rt_ual memory system whose internal structure pro-
to belong to both a file object and an anon at the samyides efficient and flexible support for d_ata movement. In
time. SunOS does not support this type of memory shar'-/_o and IPC reS(_aarch, the focus is on using fgatures that the
ing. SUNOS VM currently does not provide UVM-like fea- Virtual memory is assumed to already provide. Thus, I/O
tures such as page loanout, page transfer, and map enﬁyr'd IPC research addressgs some problems that UVM does
passing. However, SunOS’s anon-style anonymous menfl0t address such as buffering schemes and API design.
ory system and modular design would ease the implemen- Brustoloni and Steenkiste from Carnegie Mellon Univer-
tation of these UVM-style features. Recent experimentafity have analyzed the effects of data passing semantics
work under Solaris introduces two new virtual memory fea-0n kernel I/O and IPC and provide optimizations that re-
tures: page soft locking and page flipping [5]. These fegduce data transfer overhead while maintaining a traditional
tures were implemented in the machine-dependent layer d#nix-like I/O API [3]. Implemented under Genie (a proto-
the VM (the “HAT” layer), thus bypassing the machine- type I/O system), two optimizations of interest are tempo-
independent part of the VM system. Most of the UVM rary copy-on-write (TCOW) and input alignment. TCOW,
work was done in the machine-independent layer. like UVM's page loanout, allows a process to lend wired
Linux!is a popular free Unix-like operating system writ- P2ges to th_(=T kernel without having to worry about the page
ten by Linus Torvalds [18]. Linux VM avoids data copy- _bemg modified or free_d. TCOW differs from page loanout
ing through its copy-on-write mechanism. This mechanisni" three key areas. First, while UVM allows pages to be
uses a copy-on-write mapping flag and a per-page referend@aned out as either wired kernel memory, or a page_able
counter to determine if a shared page should be copie@nonymous memory, TCOW can only be used with wired
Like SunOS, Linux does not allow processes to share copy<€rnel memory. Second, while UVM's page loanout mech-
on-write regions. Additionally, since Linux stores copy-on- &niSm was implemented on top of UVM's new anon-based
write state in its page tables, mapping-level granularity VM&n0Onymous memory system that provides page granularity
operations on copy-on-write memory require page-leveVV'th low overhead, TCOW was implemented as an a(_jd-on
operations. Linux also does not support write-protecting© the old BSD VM system, and thus has to contend with all
all mappings of a page of physical memory. This makes itthe_ drawpacks of BSD VM'’s object chaining mechanism.
impossible to transition a shared page into a copy-on-writd hird, while we have demonstrated how page loanout can
state, and thus prevents Linux from supporting VM fea-P€ integrated with BSD’s mbuf-based IPC system, TCOW
tures such as UVM’s page loanout. Linux has some suppoff & Prototype, and it has only be demonstrated with Genie
for remapping memory, but only within a process’ addresdCompletely bypassing the traditional BSD IPC system).
space. The Linux-specifitr emap system call is used by NPUt allg_nment isa techmque that can be uged to preserve
some versions of Linuxaal | oc to resize its heap. an API v_\nth copy semantics on data input while using page
Although not a Unix-like operating system, Microsoft's remapping to actually move the data. In order to do input

Windows-NT operating system’s VM system Suploortsalignmem either the i_nput request must be @sstnm”drethe _
many of the same features as Unix-like operating systemg,alta arrves so Genie can analyzg the alignment require-
[17]. NT avoids data copies through copy-on-write angMents of the input buffer, or the client must query Genie

local procedure calls (LPCs). NT's general structure amﬁbom the alignment of buffers that are currently waiting to
copy-on-write mechanism are similar to those found in e transfered. Genie also has several techniques for avoid-

Linux, and thus the same limitations that apply to Linux ap_mg data fragmentation when the input data contains packet

ply to NT. LPCs are an internal-only IPC facility that uses N€@ders from network interfaces.

virtual memory features in some cases to transfer data. For Druschel and Peterson’s fast buffers (fbufs) kernel sub-
LPC messages of less than 256 bytes data copying is usez)/Stem is an operating system facility for IPC buffer man-

For LPC messages larger than that, a shared object is all§gement developed at the University of Arizona [7]. Fbufs,

cated and used to pass data. For very large data that wifi” add-on to the Mach microkernel, provide fast data trans-

not fit in a shared section. NT's LPC mechanism allows €l @cross protection domain boundaries. The fbuf system
the server to directly read or write data from the client's'S based on the assumption that IPC buffers are immutable.

address space The kernel and each process on the system share a fixed
sized area of virtual memory set aside as the “fbuf region”
1We examined the virtual memory system that appears in the moswhere all f_bu_fs must be mappeq. The fbuf fa(_3|||ty has two
recently available version of Linux — 2.1.106. useful optimizations: fbuf caching and volatile fbufs. In

fbuf caching, the sending process specifies the path the fbyfresence of page faults, pageouts, and memory flushes. Fi-
will take through the system at fbuf allocation time. This nally, it should operate in such a way that it provides access
allows the fbuf system to reuse the same fbuf for multipleto memory at page-level granularity without fragmenting or
IPC operations. \olatile fbufs are fbufs that are not writedisrupting the VM system’s higher-level memory mapping
protected in the sending process, saving some VM operadata structures. Section 4.1 describes how UVM meets this
tions. The fbuf facility has several limitations. First, the goal through the page loanout mechanism.
only way to get data from the filesystem into an fbuf is to Allow pages of memory from the I/O system, the IPC
copy it. Second, if an application has data that it wants tesystem, or from other processes to be inserted easly
send using an fbuf but that data is not in the fbuf region,into a process addressspace. Once the pages are inserted
then it must first be copied there. Third, it is not possibleinto the process they should become anonymous memory.
to use copy-on-write with an fbuf. It should be possible Such anonymous memory should be indistinguishable from
to combine UVM features such as page loanout and paganonymous memory allocated by traditional means. The
transfer with the fbuf concept to lift these limitations. mechanism used to do this should be able to handle pages
Pasquale, Anderson, and Muller's Container Shippinghat have been copied from another process’ address space
I/0 system allows a process to transfer data without havusing the previous mechanism (page loanout). Also, if
ing direct access to it [15]. Developed at University of Cal-the operating system is allowed to choose the virtual ad-
ifornia (San Diego), the container shipping API allows adress where the inserted pages are placed, then it should
process to allocate a container, and the fill it with pointersoe able to insert them without fragmenting or disrupting
to data buffers. Once full, a container can be shipped to arthe VM system’s higher-level memory mapping data struc-
other process or the kernel. Rather than receiving the dataires. Section 4.2 describes how UVM meets this goal
directly, the receiving party receives a handle to the conthrough the page transfer mechanism.
tainer. The receiver can choose to map some of the con- Allow processes and the kernel to exchange large
tainer’s buffers into its address space for modification, andhunks of their virtual address spaces using the VM
then it can unmap them. The container can be passed aystem’shigher-level memory mapping data structures.
to another process. By using these operations process&sich a mechanism should be able to copy, move, or share
can pass data between themselves without mapping it intany range of a virtual address space. This can be a problem
their address space. A container shipping 1/0 system coultbr some VM systems because it introduces the possibil-
easily take advantage of UVM data movement mechanismigy of allowing a copy-on-write area of memory to become
when loading, unloading, and transferring containers. shared with another process. The per-page cost for this
mechanism should be minimized. Section 4.3 describes

) how UVM meets this goals through the map entry passing
3 UVM Overview mechanism.

Our primary objective in creating UVM is to_produce avir 51 VM Structure
tual memory system for a Unix-like operating system that
has flexible, general, and efficient VM-based data movewhen designing UVM, we focused our efforts on the as-
ment facilities integrated into its design. The kernel'spects of the VM system that directly effect data move-
I/0 and IPC systems can take advantage of these faciliment. For VM design elements not directly related to
ties to reduce data movement overhead. Unlike many othatata movement we reused useful parts of the BSD VM de-
prototype-based VM research projects, our work has beesign to avoid reinventing the wheel and to ease UVM’s
implemented as part of an operating system that is in wideintegration into the NetBSD source tree. For example,
spread use. Thus, we have designed our new virtual menwe reused BSD VM's VM map structure and machine-
ory features so that their presence in the kernel does naiependent pmap layer. Reusing the pmap layer allows us
disrupt other kernel subsystems. This allows experimentab take advantage of existing machine-dependent work in
changes to be introduced into the 1/0 and IPC subsysterboth BSD VM and Mach.
gradually, thus easing the adoption of these features. Our UVM’'s machine-independent layer handles all high-
work centers around several major goals: level VM functions. These functions are centered around
Allow a process to safely let a shared copy-on-write eight major machine-independent data structures, shown in
copy of its memory be used either by other processes, Figure 1.
the I/O system, or the IPC system. The mechanismused All processes have anmspace structure that con-
to do this should allow copied memory to come from atains pointers to the machine-dependent and machine-
memory mapped file, anonymous memory, or a combinaindependent data structures that define the mappings in
tion of the two. It should provide copied memory either asa process’ address space. Low-level machine-dependent
wired pages for the kernel’s I/O or IPC subsystems, or asnappings are contained in the pmap structure. The
pageable anonymous memory for transfer to another pranachine-independent mappings are stored invitmarap
cess. It should gracefully preserve copy-on-write in thestructure. All processes and the kernel have their own

process 1 (init) process 4 (sh)

For the lower-level object layer, a map entry contains a

e %@ %E pointer to auvmobj ect structure. A UVM object rep-
Pmep resents a file, a zero-fill memory area, or a device that can
vm-map F EL be mapped into a virtual address space. Each UVM ob-
map entry SR P ject contains a list of mpage structures that belong to it
(points to process 4's and a pointer to aavmpager ops structure. The UVM

amaps and objects)

pagerops are used to access backing store.
Finally, avmpage structure describes a page of phys-
vm_amap] I %3 I \}E ical memory. These structures are allocated when the sys-
BERE

vm_anon

tem is booted. In addition to being referenced by UVM
objects and anons, pages are also referenced by the page
queues and the object-offset hash table. The page queues
are used by the pagedaemon to identify pages whose data
vom can be paged out so that the page can be used elsewhere.
- p:g?@ob?i;ct; N process 4 The object-offset hash table allows UVM to quickly lookup
- a page in an object.

vm_page (anon)

e

shin/init A Ibinish

uvm_pagerops ‘ | ‘ | ‘ |

device wnode aohi 3.2 UVM Data Structure Locking
. [swapiofns Data structure locking is an important aspect of a virtual
memory system since many processes can access VM data
swap space

concurrently and we want to avoid data structure corrup-

_ tion and deadlock. As we have significantly changed the
Figure 1: UVM data structures at a glance. Note that there,¢5 structures in UVM, we had to replace BSD VM’s lock-
isonevmar ef data structure within each map entry struc- ing strategy with a new one. UVM data structures must be
ture. The page queues and object-offset hash table are ngfcked in the following order: map, amap, object, anon,

shown. and finally the page queues. All the data structure locks are
spin locks with the exception of the map lock. Functions

that need to lock data structure in the wrong order must use

vmnap structure that contains a list of map entries thatnon-block!ng lock attempts a_nd give up (or startover)if the
on-blocking lock attempt fails.

define mapped areas in their virtual address spaces. Eadf;
map entry maps an area of virtual address space to mem-

ory objects. In BSD VM, the map entry points to an ob- 3.3 UVM Copy-On-Write
ject chain, as described in Section 2.1. UVM, on the other
hand, has a two-level memory mapping scheme. Each maé

entry points to an anonymous memory map (amap) and g : i e
single, non-chained, memory object. The two-level map-& Packinguvmobj ect . When copy-on-write data is first
written, the page fault routine allocates a new anon with a

ping scheme greatly simplifies the implementation of mem)) ,
ory lookup, object management, and UVM's page granu"€W Page, copies the data from themobj ect 's page
ato the new page, and then installs the anon in the amap

lar data movement mechanisms. Note that some mappin .) :) A
may only make use of one of the two layers. or tha_lt mapping. When UVM’s fault routllne copies copy-
For the upper-level amap laver a map entrv contain on-write data from a lower-layenvmobj ect into an
PP P 1ayer, X ye pper-layer anon it is called a “promotion.” Once copy-on-
avmar ef structure — a small structure that points to . .
an offset in an ANONVIMOUS Memory maor(aman). An write data has been promoted to the amap layer, it becomes
y y mapnamap). anonymous memory. Anonymous memory also can be sub-

amap describes an area of anonymous memory. The et to the copy-on-write operation. An anon can be copy-

may have “ho!es” in.it that allow references to fall throug.h on-write copied by write-protecting its data and adding a
to the underlying object layer. The amap structure Contaln?eference to the anon. When the page fault routine detects

a list ofvmanon structures t_hat are currently mapped into a write to an anon with a reference count greater than one,
it. Each anon represents a single virtual page of anonymou

memory. An anon’s data may reside in a residanfpage wil copy-on-write the anon.

of memory, or it may be paged out to to the swap area.

All UVM copy-on-write operations are handled throughthe4 UVM Data M ovement

anon structure. While the design of UVM’s amap layer was

inspired by SunOS’s anonymous memory layer, there are @his section describes the design and function of UVM’s
few key differences (see Section 2.2). page loan out, page transfer, and map entry passing in-

opy-on-write is achieved in UVM using the amap layer.
opy-on-write data is originally mapped in read-only from

terfaces. All three interfaces allow a process to move Virtual address space

data using virtual memory operations rather than costly objpage | page loanout to
data copies. These interfaces provide flexible and efficient wired kernel pages
building blocks on which advanced I/O and IPC subsys- anon page/
tems can be built. ;

obj page —

anon page page loanout to pageable
4.1 Page L oanout | . anonymous memory (anons)

Under a traditional kernel, sending data from one process

to another process or a device is a two-step procedure. First
the data is copied from the process’ address space to a ker-
nel buffer. Then the kernel buffer is handed off to its desti-
nation (either a device driver or the IPC layer). The copy of

ware all writable mappings of the page. However there are
the data from the process’ address space to the kernel buff)
adds overhead to the I/O operation. It would be more effi- any cases where pages are already read-only, for example

cient if I/O could be performed directly from the process’ ?e\gg_eoonls;rver may transmits data from a file thatis mapped

address space, but in a traditional kernel it is necessary to In order t difv data in a | d out the k |
copy the data for three reasons: the data may not be resi- n order to modify data in a loaned out page, the kerne

dentin main memory, a process may modify its data whilgMust termmat_e or “break” the loan. Brea_kmg a Iqan n-
olves allocating a new page off the free list, copying the

the 1/0 operation is in progress, or the data may be flushegalta from the loaned page o the new page, and then replac-

or paged out by another process or the page daemon. | .
Page loanout is a feature of UVM that addresses thest'd the old page with the new one. Note that the old page

issues by allowing a process to safely loan out its pages tfemains allocated and immutable because it is still being

another process or the kernel. This allows the process tBsed_tf(_)r Ioangkl)Jlt.]}Nht?]n relzlacmg ?n S Id page“W|th al nev1\,/
send data directly from its memory to a device or anothegjne IL1S possibie for the old page fo become "owneriess

Figure 2: Page loanout

process without having to copy the data to an intermediat ecausle It1s no Iongefr as;oc;wate(:hwﬁh al rlnemory t(r)]bjec_t.
kernel buffer. This reduces the overhead of /O and allows> ''€/1€SS pages are ireed when the final loan on them Is

the kernel to spend more time doing useful work and |eséiropped. _
time copying data. Memory pages loaned to the kernel have three important

At an abstract level, loaning a page of memory out isProperties. First, pages loaned to the kernel must be resi-
not overly complex. To loan out a page, UVM must makedent. If the data is on backing store then it is fetched be-
the page read-only and increment the page’s “loan countfore thg Ioa_nout proceeds. Second, each page loaned to the
Then the page can safely be mapped (read-only). The conlf€rnel is “wired” to prevent the pagedaemon from attempt-
plexity of page loanout arises when handling the special"d 0 pageout a page loaned to the kernel while the kernel
cases where some other process needs to make use ofsgstill using it. This is important because if the pagedae-

page currently loaned out. In that case the loan may hav@10n was allowed to pageout the page then the next time
to be broken. the kernel accessed the loaned page an unresolvable page

fault would be generated (and the system would crash).
Third, pages loaned to the kernel are entered into the ker-
nel’s pmap with a special function that prevents page-based
A page of memory loaned out by a process must come fronemap operations from affecting the kernel mapping. This
one of UVM’s two mapping layers. As shown in Figure 2, allows UVM to perform normal VM operations on the
a process can loan its memory out to either the kernel otoaned-out page without having to worry about disrupting
to another process. To loan memory to the kernel, UvMthe kernel's loaned mapping and causing an unresolvable
creates an array of pointers to wirgdipage structures page fault.
that can be mapped into the kernel's address space. To loanMemory pages loaned from an object to an anon have
memory to other processes, UVM creates an array of pointtwo important properties. First,lavmobj ect 's page can
ers to anon structures that can be entered into an amap thaxtlly be loaned to one anon at a time. Future loans to an
belongs to the target process. The target process treats thaon need only gain a reference to the anon the page is
loaned memory like normal anonymous memory. Therealready loaned to (rather than allocating a new anon to loan
are four possible types of loans: object to kernel, anon tdo). Second, while most pages are referenced by either a
kernel, object to anon, and anon to anon. Note that it isivmobj ect or an anon, pages loaned from an object to
possible for a page froma mobj ect to be loanedto an an anon are referenced by both. Although both object and
anon and then later loaned from that anon to the kernel. anon reference the page, the object is always considered to
Before a page can be loaned out, it must be made readbe the owner of the page. Thus, the object must be locked in
only (immutable). This involves write-protecting in hard- order to access the page’s fields. All data structure locking

4.1.1 Loan Typesand Attributes

must follow the locking protocol presented in Section 3.2, Virtual address space

An anon that has a page on loan from an object does not aon page/ page transfer from
hold a reference to that object. Thus, when locking data donated kernel pages
structures, it is possible for the object to terminate between anon Page/
the time the page’s object field is read and the time the lock anonpagel-—__
on the object is attempted. In order to prevent this, the page transfer from pageable
page queues must be locked before trying to lock the object. anonpagel~—___ anonymous memory (anons)

Locking the page queues prevents the page’s loan count
from changing and thus ensures that the object cannot be

terminated until the page queues are unlocked. Figure 3: Page transfer

4.1.2 Handling Loaned Out Pages])])
started. This may result in the paged-in data being com-

There are several places in UVM where loaned out pagegletely replaced by the copied data.

have to be treated specially. First, when locking an anon For large chunks of data all this copying can get ex-
that points to a page that is ownerless, the anon should takgensive. Page transfer provides the kernel a way to work
over as owner of the page. This allows objects to donat@round this data copy by allowing the kernel to inject pages
data to anons without the need for a data copy. Secon@f memory into a process’ virtual address space. Page
when freeing a page with a non-zero loan count, the paggansfer takes kernel pages or anons and installs them at
becomes ownerless and should not be freed until all loangither a virtual address specified by the user or in an area
to it are terminated. Third, when there is a write fault on aof virtual memory reserved for page transfer. UVM keeps
loaned page care must be taken to map in pages with a noa-pool of amaps, preallocated for reuse by the page transfer
zero loan count read-only. If the write fault is on a sharedmechanism, in the page transfer area of memory. Once a
mapping or an anon with a reference count of one, then thgage has been transfered into a process’ address space it is
loan must be broken before the fault can be resolved. Notgeated like any other page of anonymous memory.

that page loanout to anons makes use of the copy-on-write

feature of UVM’s anonymous memory layer.
4.2.1 PageTransfer Types

4.1.3 Using Page L oanout There are two types of page transfer operations: kernel

. page transfer and anonymous page transfer. These oper-
Page loanout can be used in a number of ways. For eXsions are shown in Figure 3. In kernel page transfer the
ample, to quickly transfer a chunk of data from one pro-yarnel donates pages to a process from one of its page
cess to another the data can be loaned out to anons, anfo|s or from its address space. These pages become part
those anons can then be inserted into an amap belonging (g i at process’ anonymous memory. To perform kernel
the targgt process. Page loanout to thg kernel can also lﬂ%\ge transfer the kernel first locates the.page struc-
used to improve both network and device I/O. For examyres of the buffer being transfered. Next, if any of the
ple, when a process wants to send data out over the netWOH‘ages are mapped into the kermel's address space those
the kerne_l would normally copy the data from the Processmappings are removed. The pages are then removed from
memory into kernel network bL{ﬁers (mbufs). However, in- oy kernel-related data structures that they are associated
stead of copying the process’ pages, the pages could kg At this point a new anon is allocated and attached
loaned out to the kernel and then associated with mbufsy a5cn page being transfered. Finally, the anons are in-
thus avoiding a costly data copy. Page loanout can also b, rteq into the receiving process’ address space in one of
used by devices. For example, an audio device could digyg ways. If the receiving process specified a target vir-
rectly access pages of audio data loaned out from a usgfiy| address range, then UVM first ensures that that range
process. This would eliminate the need to copy the data tg¢ memory has amaps associated with it (allocating new

a private kernel buffer. amaps if necessary) and then inserts the anons into the ap-
propriate amaps, replacing any previously allocated anons
4.2 Page Transfer in that area. On the other hand, if the receiving process did

not specify a target virtual address, then UVM locates free
Under a traditional BSD kernel, when the kernel wants tospace in the page transfer area for the anons and installs
move some of its data from a kernel buffer to a user prothem there. Once this is done the transfer is complete. The
cess’ virtual address space it uses tlopyout function. pages are now part of the receiving process’ normal anony-
This function copies the data word by word to a user buffermous memory pool.
If the user’s buffer is not resident, then a page fault is trig- In anonymous page transfer the data being transfered is
gered and the the buffer is paged in before the copy islready in anon structures. Typically these anons are the

result of a page loanout operation. In this type of page Anonymous page transfer can be used with page loanout
transfer, UVM does not have to remove the pages from théo anons as part of an I/O or IPC mechanism. For exam-
kernel or other processes. Instead, it only has to insert thple, anonymous page transfer could be used for aligned
anons into the receiving process’ address space in the sarpage-sized ead operations on a file. Rather than copy-
way as described above. ing the data to anonymous memory witbpyout , an ob-
ject’'s pages can be loaned to anons and those anons can

.] be transfered into the reading process’ address space. A

4.2.2 Disposing of Transfered Data similar effect could be achieved usimgrap, but mmap

%uld fragment the high-level memory mapping structures.

Processes receiving data via page transfer need to rele .
these pages when they are no longer needed in order oage transfer does not fragment high-level memory map-

avoid accumulating too much memory. This can be dond'"9S because it provides page-level granularity.
in three ways. First, a process may unmap transferred data
using the standardunmap system call. A problem with 4.3 Map Entry Passing

this is thatmunmap will free both the transfered anons and .
Under a traditional system, processes often exchange data

the amap containing them. This forces UVM to allocate a ither th h pi th h shared In BSD
new amap the next time pages are transfered to to the sam& €f through pipes or through shared memory. In '
Ipes are implemented as a connected pair of sockets.

virtual space. A second way to dispose of transfered dat : i : X .
hen the sending process writes data into a pipe, the data is

is to use the newanf | ush system call. This system call iod f th di ' add into a k

removes anons from a specified virtual address range WithQOFf p rom the ts)en '_?E progefs; ?h resls sp:ce Into a ker-

out freeing the amap allocated to it. This allows the ama €l butter (qr? mbuf). The mbuf s then placed on a queue
or the receiving process. When the receiving process reads

to be reused for future transfers. The final way to dispos the pine. the data i iod f i d mbuf int
of transfered data is to push the anon pages down into th%Om € PIpe, the da E,i IS copied from the queued mbutinto
e receiving process’ buffer. Thus, data transmitted over a

object mapping layer. This can be done either by donating.~ ied twi
the ownership of the anons’ pages to an object (establishin IP€ 1S copied twice. . . .
Shared memory can be established in three ways. First,

a loanout relationship between the anon and the object), o .
e System V shared memory interface allows a process

by freeing the anons and inserting the pages into an object.
y g g pag) to create a shared segment of anonymous memory. Each

segment of shared memory has a size and a protection.
4.2.3 Using Page Transfer Once created, any process with the appropriate permissions

can attach the shared memory segment into their address
Kernel and anonymous page transfer can be used in seveigace. The second way shared memory can be established
ways. For example, kernel page transfer can be used witls through themap system call. Changes made to files that
device drivers or the IPC subsystem. For devices such asave been mappeddAP_SHARED will be seen by all pro-
audio cards, when recording the driver can allocate pagesesses accessing the file. The final way shared memory can
from UVM to DMA into. These pages can then be trans-pe established occurs is when a forking process arranges
fered into the application that is reading from the audio defor all or part of its memory to be shared with the child
vice. For the IPC system, mbuf data can be read with paggrocess.
transfer. There are two sizes of mbufs: large and small. If UvM provides a new way for processes to exchange
large mbufs are made page sized, then they may be eligibigata: map entry passing (shown in Figure 4). For large
for kernel page transfer. There are two possible types ofjata sizes, this is more efficient than pipes because data is
large mbufs. Large mbufs that have normal page-sized dat@oved without being copied. Map entry passing also has
areas allocated out of the kernel are called “cluster” mbufsseveral advantages over traditional memory sharing mech-
Large mbufs that refer to memory managed by other subanisms. Unlike System V shared memory, map entry pass-
systems are called “external” mbufs. Pages from clustejng is not restricted to anonymous memory. Map entry
mbufs that have a reference count of one can easily be dgyassing allows a range of virtual addresses to be shared,
nated to a process through page transfer. External mbufsopied, or moved. This range can include multiple memory
can refer to many types of memory including a networkmappings and unmapped areas of virtual memory. Map en-
interface card’s memory or pages loaned out from a protry passing also does not require the services of the filesys-
cess. Pages that belong to networking hardware cann@m layer, unlikenrap. While page loanout and page

be transfered, but external mbufs that refer to loaned oufansfer have page-level granularity, map entry passing has
pages can be transfered by adding an additional loan to afmapping-level granularity.

anon and then using that anon for anonymous page trans-
fer. This is an example of page loanout and page transfeL{
being used together to avoid data copies. Note that a new
API is required in order for a process to receive data withThe map entry passing mechanism operates as follows. Vir-
page transfer. tual space is first reserved in the target map for the passed

3.1 Map Entry Passing mplementation

source virtual target virtual expor t /i mpor t IPC facility on top of UVM's map entry

address space address space . .
R passing mechanism that allows a process to export ranges
of its virtual address space to other processes. A process
= with the appropriate permission can import one of these

virtual address ranges into its address space. This IPC fa-
— cility is similar to System V shared memory, however it is

map entry passing l more generalized.
(copy, share, or donate)

In this section we describe five sets of tests designed to
measure the performance of UVM's new features. The re-
sults of these measurements show that page loanout, page
Figure 4: Map entry passing transfer, and map entry passing can significantly improve
I/0 and IPC performance over traditional systems.
All our tests were performed on 200 MHz Pentium Pro
rocessors running NetBSD 1.3A with either UVM or BSD

i 5 Measurements

memory. Then the source map s entry !'St IS searched fo M. Our Pentium Pros have a 16K level-one cache, a 256K
the first map entry that contains the starting virtual address,

There are four possible ways for a receiving process to e?vel-two cache, and 32MB of physical memory. The main
P Y gp 9 inemory bandwidth of our Pentium Pros is 225 MB/sec for

passed memory. The memory can be shared, copied (W'Weads, 82 MB/sec for writes, and 50 MB/sec for copies, as

copy-on-write), donated, or donated with zero-fill. Donat- reported by thé nbench memory bandwidth benchmarks
ing the memory causes it to be removed from the sendm%/ersion 1.2)[12]

process’ virtual address space and placed in the receivin
process’ space. After the memory has been passed the vir-

tual space in the sending process will be unmapped. Donafe.l Page L oanout Performance
with zero-fill is the same as donate, except that rather thaﬂ

. . convenient place to measure the effect of page loanout
leaving the exported range of virtual space unmapped after o
. - . on /O is in the transfer of data from a user process to a
it has been passed it is reset to be zero-fill memory.

- . . device. In a traditional system, this would involve copying
Each source map entry that is in the virtual range is ;

N . . ; : . the data from the user’s address space to a kernel buffer,
copied into a list of map entries that will be inserted in

the destination map (if the memory is being donated rathezrinOI then performing I/O on that buffer. With page loanout,

than copied or shared then the source map entry is remov S&Ch an I/O operation could be done by loaning the pages

. $Fom the user’s address space directly to the device, thus
from the source map). When the end of the virtual range is_ . . X .
. . . 2~ “avoiding the data copy. Networking devices are often cho-
reached, the new map entries are inserted in the destination
: . sen for such measurements, so we measured the effect of

map at the virtual address previously reserved.

. : page loanout on the speed with which data can be pumped
The function that extracts the map entries from thetgrough the BSD networking subsystem.

source map has a special mode of operation that is use : ;
) One problem with measuring the performance of page
for short-term shared map entry passing of a small num:

ber of pages. This mode is called “quick reference mode.’loanOUt with the networking subsystem is that current pro-

; . ¢cessors can easily generate data faster than current gen-
Normally, using map entry passing to pass small areas o

R X eration network interfaces can transmft itFor example,
memory would be inefficient because it would cause thet . : :
source map’s larger entries to be fragmented into smallerhe Pentium Pro processor on our test machine can easily

swamp the network interfaces we have available (100Mbps

mappings in order to satisfy the map entry passing requests. : -
Quick reference mode takes advantage of the fact that th?ast Ethernet and 155Mbps ATM cards). This results in ei

ther the transmitting process being stalled until the network

passed memory is going to be briefly used and then un- . . .
. interface layer can catch up, or in data being discarded at
mapped. This allows UVM to relax the management of ref-)
tpe network interface layer due to a full network queue. If

erences to object and amap structures and avoid fragmen . X ;
) . one of these network interface cards was used in measuring
ing the source map. Quick references are currently used b

thept r ace system call to read and write the memory of a }Xage loanout, any positive TeS“.'tS achieved by page loanout

process that is being debugged. yvould be seen as a reduction in processor Ipad _ra;her than
increased bandwidth. In order to avoid being limited by

.) network interface hardware a new “null” protocol layer was

4.3.2 Using Map Entry Passing introduced into the BSD kernel. This protocol discards data

Map entry passing can be used to eXChange C_Iata I:)etween2Next-generati0n network interfaces such as Gigabit E#teamd
processes and the kernel. For example, we built a memonyigher-speed ATM interfaces can transmit data at highezdgpe

800 AR bench. Meanwhile, the loanout bandwidth rises sharply as

A the write size is increased. When the write size is 32K
M the loanout bandwidth is 560 MB/sec. The loanout band-
o width levels off at 750 MB/sec when the write size is 512K.
Clearly, page loanout improved the I/O performance of the
| test program by reducing data copy overhead. Thus, ap-
/ plications that transmit data without touching it, such as
byt the multimedia video server described in [4], could benefit

from page loanout.

bandwidth (MB/sec)
B D
o o
o o
Sm

N
(=]
]
AN

v 5.2 Page Transfer Performance

1 fo 160 1600 10000 . i i .
write size (kbytes) Page transfer moves data in the opposite direction than

page loanout does. In page loanout, a process loans its data
Figure 5: Comparison of copy and loan procedures foout to some other process or the kernel. In page transfer, a
writing to a null socket process receives pages from other processes or the kernel.
The pages received may either be loaned from another pro-
cess or donated from the kernel. The benefit of using page
transfer is that the transferred data is moved into the receiv-
rather than passing it to a network interface. This allows theng process’ virtual address space without the overhead of
data transfer overhead of copying verses page loanout to kedata copy.
directly measured. The effect of page transfer on the overhead of I/O oper-
To measure the effect of page loanout we wrote a tesétions can be measured using the kernel’s networking sub-
program that uses the null protocol to transmit large chunksystem in a way that is similar to the procedure used to
of data through the socket layer. The actions performed byneasure the effect of page loanout. In a traditional system,
the test program are similar to programs such as ftp, webwhen data is read from a socket it is copied from a ker-
and video servers. Such programs operate by opening da| mbuf into the receiving process’ virtual address space.
files and transmitting the file’s content over the network.\with page transfer, the network read operation on larger
The test program transmits data using either the normathunks of data can be done by using page transfer to trans-
wr i t e system call to copy data from user space into kerneter a large mbuf’s data area from the kernel directly into
buffers, or using a modifiedr i t e system call that moves the receiving process’ virtual address pace, bypassing the
user data into the networking system through page loanoutopy. For this to be feasible, the kernel should be config-
The test program was run using a two megabyte buffeured so that the buffer size of a cluster mbuf is equal to
that was transmitted 1024 times. Thus, two gigabytes ofhe system page size. To measure the effect of page trans-
data was transmitted for each run of the test program. Eacfer a new “null” socket read call was introduced into the
run of the program was timed so that the bandwidth of theBSD kernel. When the socket layer detects a null socket
null socket could be determined. The write size was variedead, it allocates an mbuf chain of the requested size (con-
from 1K to 2048K. The results of the test using copyingtaining random data) and uses it to satisfy the socket read
and page loanout are shown in Figure 5. request. This allows us to directly measure the effect of
For write sizes that are less than the hardware page sizgge transfer on 1/O overhead by observing the bandwidth
(4K), copying the data produces a higher bandwidth tharof null socket reads. Note that unused portions of a clus-
using page loanout. This is due to the page loanout mecher mbuf’s data area are zeroed to ensure data security (this
anism being used to loan out pages that are only partiallys a concern when we are transferring real data rather than
full of valid data. For example, when the write size is 1K null-socket data).
for each page loaned out there is 3K of data in the page We wrote a test program that uses null socket reads to re-
that is not being used. Once the write size reaches theeive large chunks of data through the socket layer to mea-
page size, page loanout’s bandwidth overtakes data copgure page transfer performance. Thus, the test program is
ing. As the write size is increased to allow multiple pagessimilar to programs that receive large chunks of data from
to be transmitted in a singler i t e call, the data copying the network or from other processes. The test program was
bandwidth increases until the write size reaches 32K. Thaised to transfer 1GB of data first using data copying and
data copy bandwidth never exceeds 172 MB/sec. Note thahen using page transfer. The read size was varied from
the data copy benefits from the fact that a streaming socketK (one page) to 2048K, and the bandwidth was measured.
was used. This allows the socket layer to break up larg&he results of the test are shown in Figure 6.
writes into smaller ones that fit into the processor’s cache. When copying data, smaller reads produce a greater
If a datagram socket is used, then the data copy bandwidtbandwidth. As the read size increases, the null socket read
drops to 50 MB/sec, the bandwidth limit obtained from Im- bandwidth decreases from 315 MB/sec to 50 MB/sec. This

800 ine using UVM to move data between two processes using

N a pipe. In a traditional system, a pipe is implemented as a
/ pair of connected sockets. Each byte of data written to the

600 - e—e copy

*—a transer | pipe is copied twice. UVM’s page loanout and page trans-
/ fer mechanisms can be used to reduce kernel overhead by
00 | o | eliminating both these copies.
The kernel's socket layer was further modified in order to
A use UVM to eliminate data copies when using pipes. While
200 | v 1 the page loanout modifications described earlier was suffi-
aK cient for use with a pipe, the page transfer modifications
for the null socket read operation were not. In order to
h I o0 5% 5900 support page transfer for pipes, the socket receive function
read size (kbytes) was modified to use page transfer on large mbufs when re-
quested. The modifications allows the socket layer to use
Figure 6: Comparison of copy and transfer procedures fopage transfer for both cluster mbufs and external mbufs
reading from a null socket whose buffers are pages loaned out from some other pro-
cess.
To measure the effect of both page loanout and page
. . . transfer on the transfer of data between two processes over
decrease is due to data caching on the Pentium Pro. Men&- pipe, we wrote a test program that operates as follows.

ory accesses to the cache are significantly faster than memy o parameters are parsed and a pipe is created. A child
ory accesses to main memory. If an application’s buffer

. ; o - process is then forked off. The child process writes a spec-
er_1t|rely fits within a cache the_zn memory references to 'tified amount of data into the pipe, using page loanout if
wil belfastehr th?r? t?e tbandW|dth of mi:? t:mfefmont/). tff ct);]requested. Once the data is written the child process closes
example, when e test program uses utters both thg, o pipe and exits. The parent process reads data out of the
source and destination buffers of the data copy fit within

.) pipe, using page transfer if requested. After a read opera-
the level-one cache producing a bandwidth of 315 MB/sec ion, the data is released using tef | ush system call.

. , _ t
When the size of the test program’s butfers are mcreaseénce all data is read, the parent process exits. The test

EE 8K dth?%/ ngh!ont%er Im V\ll'ihm the hlevel_l—_cr)]pe cacrlle,.but program takes as parameters the amount of data to transfer
ey do it within the level-two cache. IS Tesults In a ey the pipe and the read and write sizes.

bandIW|dth dtro;i fto 225 dMB/SECf' Thg‘??n%vxlgthHremams We used the test program to produce four sets of data.
nearly constant for read sizes from ° - TIOWEVET,e ., each set of data we transfered 1GB of data varying the

bem’een 128K and 256K the bandwidth drops to 50 MBlse(?ead and write sizes from 4K to 2048K. The four data sets
as the size of the data buffers becomes larger than the level- _ .

two cache. Finally, the bandwidth eventually levels out at
50 MB/sec (the same value we got frombench’s mem- copy: Data was copied on both the sending and receiving
ory copy benchmark). The 4K read size gets the full benefit ~ ends of the pipe.
of the high bandwidth of the Pentium Pro’s level-one cache
since it was the only process running on the system whetransfer: Data was copied on the sending side and moved
the measurements were taken (so its data was always fresh with page transfer on the receiving side of the pipe.
in the cache).] .]
On the other hand, the cache does not play as greé?an: Data was _Io_aneq outon the_ sending side and copied
a role in page transfer. The bandwidth starts around O the receiving side of the pipe.
190 MB/sec for page sized transfers, and then increases
to 730 MB/sec for a 1MB page transfer. The final dip in
the page transfer curve is due to the cache. As the transfer
size gets larger, the page transfer code touches more kernghe results of this test are shown in Figure 7.
data structures, and at some point this causes touched datagg, page sized data transfers (4K) copying produces a
structures to exceed the size of the level one cache. bandwidth of 40 MB/sec, while page transfer and page
loanout produce bandwidths of 33 MB/sec and 45 MB/sec,
5.3 Using UVM to Transfer Data Between respectively. Using both page transfer and page loanout at
Processes the same time with page sized transfers produces a band-
width of 70 MB/sec.
In the previous two sections we discussed the effect of page As the transfer size is increased, the bandwidth of data
loanout and page transfer on the movement of data betweearopying drops and levels off at 26 MB/sec due to the effects
a process and a network interface. In this section, we exanof the cache. Meanwhile, the bandwidth of both transfer

bandwidth (MB/sec)

'Yoth: Data was loaned out on the sending side and moved
with page transfer on the receiving side of the pipe.

500 T T T 100

T
) /l\ e—e copy
=——ame.p
400 + A, 1 80 "
/
> > / \.
(8] (8] / \
2 2 J \
@ 300 &—e copy @ 60 - ! \
= =—a transfer = / \
] loan £ h\
_’g &—a both 'g \
S 200 B S 40 - " \
c c / N\
] 51 / s = a
Q Q /
W
100 - g 20 \\\‘\\\ﬁ_A_A_4
) . . .) . . .
1 10 100 1000 10000 1 10 100 1000 10000
transfer size (kbytes) transfer size (kbytes)

Figure 7: Comparison of copy, transfer, loan, and both proFigure 8: Comparison of copy and map entry passing
cedures for moving data over a pipe (m.e.p.) transferring memory between two processes

and loanout levels off at 43 MB/sec as the transfer size is inbe determined.
creased. Since both these tests still have data copying at oneAs shown in Figure 8, the bandwidth curves for the test
end of the pipe, they are effected by caching in the samgrogram that uses data copying via the socket pair start off
way as data copying, however their bandwidth is almoshear 35 MB/sec for a one page transfer size. The bandwidth
double that of copying because they are only touching thelecreases as the transfer size increases due to caching ef-
data on one end. The page loanout curve rises higher thagcts. The bandwidth of the data-copying tests level off at
the page transfer curve in mid-range transfer sizes becaud@ MB/sec. On the other hand, the bandwidth curve for the
page loanout has less overhead than page transfer. Pagrp entry passing test program peaks around 96 MB/sec
transfer has the added complication of having to replace thfor a transfer size of 64K and then caching effects on ker-
data page removed from cluster mbufs with another pageel VM data structures cause it to fall and level off at
The bandwidth of the test in which both loanout and trans-34 MB/sec.
fer are used rises sharply and levels off at 400 MB/sec for |f the application does not touch the data after it is trans-
large transfer sizes. In this case the data is not touched @¢red then the bandwidth for data copying levels off at
copied at all, instead a copy-on-write mapping to the send18 MB/sec rather than 12 MB/sec. On the other hand, if
ing process’ page is added to the receiving process. the map entry passing test program does not touch the data,
then the bandwidth rises rapidly, reaching 18500 MB/sec
for a transfer size of 4096K. This high bandwidth occurs
because the data being transfered is accessed neither by
Data passing between programs through pipes or socketBe application program nor the kernel, so the data is never
is quite common on Unix-like systems. If an application loaded into the processor from main memory.
passes large amounts of data over a pipe, it might benefit Another test program we wrote combines the use of map
from map entry passing. To measure the effect of map entrentry passing with page loanout. The test program consists
passing, we wrote two test programs that pass a fixed-sizeaf three processes. The first process allocates and initializes
chunk of data between two processes a specified number data buffer of a specified size and then sends it to the
of times. One test program passes data between processecond process. The second process modifies the data and
by sending it over a local socket. This causes the kernel tthen sends it to the third process. The third process receives
copy the data from the sending process into an mbuf chairthe data and writes it to a null protocol socket. Then the first
and then to copy it from the mbuf chain to the receivingprocess can generate another buffers worth of data. Such a
process. The other test program passes data between pdata pipeline application is similar to the multimedia “I/O-
cesses by using map entry passing. The test program canipeline model” described in [15].
optionally “touch” the data after it arrives to simulate data In the test program the data can be exchanged between
processing. the processes either with data copying or with map entry
Each test program was run using transfer sizes rangingassing. The final process can write the data out with either
from 4K to 4096K. The number of times the data was trans-data copying or page loanout. We ran the test program with
ferred from parent to child process and back was adjustettansfer sizes from 4K (one page) to 4096K. The number
so that the test program ran for at least thirty seconds. Eaobf transfers was adjusted so that the test program ran for at
run of the program was timed so that the bandwidth couldeast thirty seconds. The results of the the tests are shown

54 Map Entry Passing Performance

%0 ‘ ‘ ‘ 6 Conclusions
e—e copy
=—=a pipeline
40 ¢ /\ 1 UVM reduces or eliminates the need to copy data thus re-
) \ ducing the time spent within the kernel and freeing up cy-
/ \ 1 cles for application processing. Unlike the approaches that
/ . s focus exclusively on the networking subsystem, our ap-
/ | proach provides a general solution that can improve effi-
/ ciency of the entire 1/0 subsystem.
J UVM provides the BSD kernel with three new mech-
| anisms that allow processes to exchange and share page-
sized and mapping-sized chunks of memory without data
h 0 oo 1000 16000 copies: page loanout, page transfer, and map entry passing.
transfer size (kbytes) While it would be foolish to use these mechanisms on small
data chunks, our measurements clearly show that for larger
Figure 9: Comparison of copy and map entry passing/pagehunks of data they provide a significant reduction in ker-
loanout pipeline nel overhead as compared to data copying. For example:
UVM’s page loanout mechanism provides processes with
the ability to avoid costly data copies by loaning a copy-
on-write copy of their memory out to the kernel or other
in Figure 9. processes. UVM’s page transfer mechanism allows a pro-

When using data copying, the bandwidth started atcss to receive anonymous pages Qf memory from other
rocesses or the kernel without having to copy the data.

20 MB/sec and then dropped and leveled off at 11 MB/se ; . .
VVM'’s map entry passing mechanism allows processes to

once the cache size was exceeded. When using map . .
{asny copy, share, and exchange chunks of virtual memory

entry passing and page loanout, the bandwidth starts tom their address space. In addition to being used sepa-

11 MBJsec for a page-sized transfer, and increases to a peE?Ia(tely, we have shown that these mechanisms can be used

gether.

UVM is now part of the standard NetBSD distribu-
tion and is scheduled to replace the BSD VM system for
NetBSD release 1.4(Note, some of the data movement
related code is currently being merged in, all should be
merged in before the 1.4 release and before OSDVM
already runs on almost all of NetBSD's platforms and is

_ expected to run on every NetBSD platform soon. A port to
Comparing the performance of UVM data movementopenBSD is also expected.

mechanisms with related work is difficult due to the wide |\ j\/\ can improve the performance of current applica-

variety of hardware platforms and different testing pro-(ions through the page loanout mechanism and secondary
cedures used across projects. However, we can makg nrovements to the VM. Further work to introduce APIs
some rough estimates of relative performance improvesy, page transfer and map entry passing will allow applica-

ments based on our results and results published in the litefjons to take advantage of these mechanisms as well.
ature. For example, the Solaris zero-copy TCP mechanism

with checksum in hardware [5] produces a factor of 1.4 im-

provement over data copying. UVM's page loanout facility Refer ences

(without the overhead of protocol processing) produces a

factor of 2.6 improvement for the same transfer size. In [1] E. Anderson.Container Shipping: A Uniform Inter-
the Container Shipping project [1] the performance of an face for Fast, Efficient, High-Bandwidth I/OPhD
IPC pipe using the container shipping mechanism to send, thesis, University of California, San Diego, 1995.
receive, and both send and receive was compared to the

performance of using data copying. The reported improve-[2] J. Barrera. A fast Mach network IPC implementa-
ment factors are 1.2, 1.6, and 8.3, respectively. A com- tion. In Proceedings of the USENIX Mach Sympo-
parable experiment under UVM using page loanout, page sium pages 1-11, November 1991.

transfer, and both mechanisms at the same time produced

improvement factors of 2.1, 1.7, and 14. Other projects re-[3] J. Brustoloni and P. Steenkiste. Copy emulation in
port results that appear to be comparable. Our rough com- checksummed, multiple-packet communication. In
parisons show that UVM produces improvements on the Proceedings of IEEE INFOCOM 199pages 1124—
same order of magnitude as the related work. 1132, April 1997.

w
S
T
\\

bandwidth (MB/sec)
N
o

10

of 40 MB/sec for a 64K transfer size. It then levels off att
26 MB/sec as the kernel data structures exceed the size ocf
the cache.

55 UVM Compared to Related Work

[4] M. Buddhikot, X. Chen, D. Wu, and G. Parulkar. En- [17] D. Solomon. Inside Windows NT Microsoft Press,

hancements to 4.4 BSD UNIX for networked mul-
timedia in project MARS. InProceedings of IEEE
Multimedia Systems’98une 1998.

2nd edition, 1998. Based on the first edition by Helen
Custer.

[18] L. Torvalds et al. The Linux operating system. See

[5] H. Chu. Zero-copy TCP in Solaris. Froceedings of
the USENIX Conferen¢cgages 253—-264. USENIX,
1996.

[6] C. Cranor. Design and Implementation of the UVM
Virtual Memory SystenPhD thesis, Washington Uni-
versity, August 1998.

[7] P. Druschel and L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. Pnoceed-
ings of the Fourteenth ACM Symposium on Operating
Systems Principle®ecember 1993.

[8] J. Dyson, D. Greenman, et al. The FreeBSD VM sys-
tem. Seehtt p://wwv. freebsd. or g for more
information.

[9] K. Fall and J. Pasquale. Exploiting in-kernel data
paths to improve I/O throughput and CPU availabil-
ity. In Proceedings of USENIX Winter Conference
pages 327-333. USENIX, January 1993.

[10] R. Gingell, J. Moran, and W. Shannon. Virtual mem-
ory architecture in SunOS. Proceedings of USENIX
Summer Conferencgpages 81-94. USENIX, June
1987.

[11] J. Hennessy and D. Patterso@omputer Architec-
ture: A Quantitative ApproachMorgan Kaufmann,
San Francisco, CA, 2nd edition, 1996.

[12] L. McVoy and C. Staelin. Imbench: Portable tools
for performance analysis. Proceedings of USENIX
Conferencepages 279-294. USENIX, 1996.

[13] J. Moran. SunOS virtual memory implementation.
In Proceedings of the Spring 1988 European UNIX
Users Group Conferengépril 1988.

[14] J. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware?RAroceedings of USENIX
Summer Conferengcpages 247-256. USENIX, 1990.

[15] J. Pasquale, E. Anderson, and P. Muller. Container
Shipping: Operating system support for I/O intensive
applications.Computer 27(3), March 1994.

[16] R. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management
for paged uniprocessor and multiprocessor architec-
tures. IEEE Transactions on Computing7(8), Au-
gust 1988.

htt p: //ww. | i nux. or g for more information.

[19] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-

pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The duality of memory and communication in the im-
plementation of a multiprocessor operating system. In
Proceedings of the Eleventh ACM Symposium on Op-
erating Systems Principlepages 63—76, November
1987.

