
Zero-Copy Data Movement Mechanisms for UVM

Charles D. Cranor Gurudatta M. Parulkar

Department of Computer Science
Washington University
St. Louis, MO 63130

fchuck,gurug@arl.wustl.edu

Abstract
We introduce UVM, a new virtual memory system specif-
ically designed to provide the I/O and IPC systems with
a range of flexible data movement mechanisms. Imple-
mented in the NetBSD operating system, UVM completely
replaces the Mach based 4.4BSD VM system. UVM pro-
vides three new virtual memory based data movement
mechanisms: page loanout, page transfer, and map en-
try passing. Page loanout and page transfer allow pro-
cesses to efficiently lend out and receive pages of memory,
thus providing the operating system with data movement
mechanisms with page-level granularity. Map entry pass-
ing allows processes to exchange chunks of their virtual
address space, thus providing the operating system with a
data movement mechanism with mapping-level granular-
ity. In addition to featuring flexible data movement mech-
anisms, UVM also improves virtual memory performance
over BSD VM in traditional areas such as forking and pa-
geout.

1 Introduction

New computer applications in areas such as multimedia,
imaging, and distributed computing expect the highest per-
formance from an operating system’s I/O and IPC systems.
Although hardware speeds have improved, the operating
system has had a hard time keeping up [11, 14]. Unnec-
essary data copying in traditional Unix-like operating sys-
tems has been one of the barriers to high performance. Bulk
copying of large chunks of data is expensive — the proces-
sor must spend its time copying the data from the source
buffer to the destination one word at a time. The speed of
this process is limited by the bandwidth of main memory.
Also, as these buffers are often larger than a processor’s
cache, copying them causes much of the useful informa-
tion stored in the cache to be flushed out to make room for
the data being copied.

Unnecessary data copies are often reduced by using a
system’s virtual memory hardware to share or remap data
buffers. The virtual memory hardware is controlled by the

heart of a modern operating system — the virtual memory
system. One common approach to reducing data copying is
to focus on I/O and IPC system design and either rely on ex-
isting mechanisms within the virtual memory system (with
possible superficial changes) or to completely bypass the
high-level virtual memory system and access the hardware
directly [2, 7, 9, 15]. In contrast, our approach is to focus on
the internal design of the virtual memory system and inte-
grate highly-flexible virtual memory based data movement
into it. We introduce UVM [6], a new virtual memory sys-
tem specifically designed to provide the I/O and IPC sys-
tems with a range of flexible data movement mechanisms.

Implemented in the NetBSD operating system, UVM
completely replaces the Mach based 4.4BSD VM system.
UVM provides three new virtual memory based data move-
ment mechanisms: page loanout, page transfer, and map
entry passing. Page loanout and page transfer allow pro-
cesses to efficiently lend out and receive pages of memory,
thus providing the operating system with data movement
mechanisms with page-level granularity. Map entry pass-
ing allows processes to exchange chunks of their virtual
address space, thus providing the operating system with a
data movement mechanism with mapping-level granular-
ity. In addition to featuring flexible data movement mech-
anisms, UVM also improves virtual memory performance
over BSD VM in traditional areas such as forking and pa-
geout.

In this paper we present the design, implementation, and
measurement of UVM’s data movement mechanisms. In
Section 2 we present background and related work. Sec-
tion 3 contains a high-level overview of UVM. Section 4
contains a more detailed description of UVM’s data move-
ment mechanisms. In Section 5 we present performance
measurements for these mechanisms. Finally, we conclude
in Section 6.

2 Background and Related Work

In this section we present background information on the
virtual memory system that UVM replaces: BSD VM. We

also examine other related work. Such work falls into two
categories: virtual memory system designs, and I/O and
IPC system designs.

2.1 BSD VM Overview

The BSD VM system is divided into two layers: a
large machine-independent layer, and a smaller machine-
dependent layer. The machine-independent code is shared
by all BSD-supported processors and contains the code that
performs the high-level functions of the VM system. The
machine-dependent code is called the “pmap” (for phys-
ical map) layer, and it handles the lower-level details of
programming a processor’s MMU. Each architecture sup-
ported by the operating system must have its own pmap
module. Each layer of the VM system does its own level of
mapping. The machine-independent layer maps “memory
objects” (usually files) into the virtual address space of a
process or the kernel. The machine-dependent layer does
not know about higher-level concepts such as memory ob-
jects; it only knows how to map physical pages of memory
into a virtual address space.

One important aspect of the VM system is how it handles
memory objects that are mapped copy-on-write. In a copy-
on-write mapping, changes made to an object’s mapped
pages are not shared — they are private to the process that
made the changes. The BSD VM system manages copy-
on-write mappings of VM objects by using “shadow ob-
jects.” A shadow object is an anonymous memory object
that contains the modified pages of the copy-on-write ob-
ject it is shadowing. The object being shadowed can be a
file object or another shadow object. Each time an object is
copy-on-write copied, a new shadow object is created for
it. A linked list of objects shadowing each other is called
a “shadow object chain.” The final object on the chain is
the object that was originally copy-on-write copied. To de-
termine which page of memory should be mapped into a
process, the object chain must be searched.

There are several problems with using shadow object
chains for copy-on-write. First, it complicates the page
fault routine by requiring it to handle arbitrary length object
chains. The fault routine must properly protect the object
chain in order to avoid race conditions. Second, if an ob-
ject chain grows too long it will slow searches and waste
both kernel and swap space. In order to avoid long object
chains, BSD VM uses a complex “object collapse” strategy
that attempts to compress object chains by merging objects
together. The object collapse code has limitations that can
cause significant performance problems in BSD in certain
cases. Third, the partial unmapping of a copy-on-write area
of memory does not free any memory resources associated
with the inaccessible unmapped area. These resources are
held until the copy-on-write area of memory is completely
unmapped. This can cause a condition known as a “swap
memory leak.”

2.2 Related Virtual Memory Systems

The Mach virtual memory system is used for memory man-
agement and IPC in the Mach microkernel developed at
Carnegie Mellon University [16, 19]. BSD VM is a sim-
plified version of Mach VM. Mach VM avoids data copy-
ing by using two mechanisms: copy-on-write and “out-of-
line” IPC messages. Mach uses a more complex version
of the BSD VM object chaining mechanism for copy-on-
write, and thus suffers from problems similar to the ones
described in Section 2.1. Mach’s “out-of-line” IPC mes-
sage passing mechanism allows processes to pass chunks
of virtual memory between themselves without data copies.
This provides mapping-level granularity and is similar to
UVM’s map entry passing mechanism. This mechanism
was found to be insufficient for certain types of IPC and
later versions of Mach were modified to allow a list of busy
pages to be extracted from a process and sent as a message
[2]. Further optimizations along these lines allow pages to
be to be pinned in memory rather than being marked busy.
While this approach does provide page-level granularity, it
is not as flexible as UVM’s page loanout mechanism, as
all copy-on-write operations must be done through Mach’s
bulky object-chaining mechanism. Additionally, Mach’s
IPC operations cause unnecessary map fragmentation when
extracting memory for page based out-of-line messages.

The FreeBSD virtual memory system is an improved
version of the BSD VM system [8]. Work on FreeBSD VM
has focused on a number of areas including simplifying
data structure management, data caching, and efficient pag-
ing algorithms. FreeBSD VM’s data structures are simi-
lar to BSD VM’s data structures, although some structures
have been eliminated. While FreeBSD retains Mach-style
shadow object chaining for copy-on-write, the swap mem-
ory leaks associated with BSD VM’s poor handling of the
object collapse problem have been addressed. Many of
FreeBSD’s improvements in the areas of data caching and
paging algorithms are applicable to UVM, thus FreeBSD
will be a good reference for future work on UVM in these
areas. FreeBSD does not have UVM-style features such
as page loanout and page transfer. These features could
be added to FreeBSD with some difficulty (due to the use
of object chaining). Alternatively object chaining could be
eliminated from FreeBSD and UVM features added.

The SunOS4 virtual memory system (also used in So-
laris) is a modern VM system that was designed to re-
place the 4.3BSD VM system that appeared in SunOS3
[10, 13]. SunOS VM avoids data copying through a copy-
on-write mechanism based on individual pages of anony-
mous memory (anons) grouped into anonymous memory
maps (amaps). UVM uses a similar scheme for copy-on-
write, however there are some key differences. First, in
UVM the anon is a general purpose virtual memory ab-
straction used in both copy-on-write and data passing. In
SunOS the anon is not a generalized abstraction and is lim-
ited to certain types of mappings that require copy-on-write

or zero-fill memory. It is not used for data passing. Sec-
ond, UVM allows processes to share amap-based copy-on-
write regions with other processes or the kernel. This is
used in map entry passing and to support Mach-style mem-
ory inheritance. SunOS lacks this feature. Third, UVM’s
amap data structure contains additional indexes to speed
up operations on sparsely populated amaps. Finally, as
part of its page loanout mechanism, UVM allows a page
to belong to both a file object and an anon at the same
time. SunOS does not support this type of memory shar-
ing. SunOS VM currently does not provide UVM-like fea-
tures such as page loanout, page transfer, and map entry
passing. However, SunOS’s anon-style anonymous mem-
ory system and modular design would ease the implemen-
tation of these UVM-style features. Recent experimental
work under Solaris introduces two new virtual memory fea-
tures: page soft locking and page flipping [5]. These fea-
tures were implemented in the machine-dependent layer of
the VM (the “HAT” layer), thus bypassing the machine-
independent part of the VM system. Most of the UVM
work was done in the machine-independent layer.

Linux1 is a popular free Unix-like operating system writ-
ten by Linus Torvalds [18]. Linux VM avoids data copy-
ing through its copy-on-write mechanism. This mechanism
uses a copy-on-write mapping flag and a per-page reference
counter to determine if a shared page should be copied.
Like SunOS, Linux does not allow processes to share copy-
on-write regions. Additionally, since Linux stores copy-on-
write state in its page tables, mapping-level granularity VM
operations on copy-on-write memory require page-level
operations. Linux also does not support write-protecting
all mappings of a page of physical memory. This makes it
impossible to transition a shared page into a copy-on-write
state, and thus prevents Linux from supporting VM fea-
tures such as UVM’s page loanout. Linux has some support
for remapping memory, but only within a process’ address
space. The Linux-specificmremap system call is used by
some versions of Linux’smalloc to resize its heap.

Although not a Unix-like operating system, Microsoft’s
Windows-NT operating system’s VM system supports
many of the same features as Unix-like operating systems
[17]. NT avoids data copies through copy-on-write and
local procedure calls (LPCs). NT’s general structure and
copy-on-write mechanism are similar to those found in
Linux, and thus the same limitations that apply to Linux ap-
ply to NT. LPCs are an internal-only IPC facility that uses
virtual memory features in some cases to transfer data. For
LPC messages of less than 256 bytes data copying is used.
For LPC messages larger than that, a shared object is allo-
cated and used to pass data. For very large data that will
not fit in a shared section, NT’s LPC mechanism allows
the server to directly read or write data from the client’s
address space.

1We examined the virtual memory system that appears in the most
recently available version of Linux — 2.1.106.

2.3 Related I/O and IPC Subsystems

In this section we examine research on I/O and IPC sub-
systems that can take advantage of services offered by vir-
tual memory systems to reduce data movement overheads.
While this research shares some of the same goals as UVM,
our approach is different. In UVM we are interested in cre-
ating a virtual memory system whose internal structure pro-
vides efficient and flexible support for data movement. In
I/O and IPC research, the focus is on using features that the
virtual memory is assumed to already provide. Thus, I/O
and IPC research addresses some problems that UVM does
not address such as buffering schemes and API design.

Brustoloni and Steenkiste from Carnegie Mellon Univer-
sity have analyzed the effects of data passing semantics
on kernel I/O and IPC and provide optimizations that re-
duce data transfer overhead while maintaining a traditional
Unix-like I/O API [3]. Implemented under Genie (a proto-
type I/O system), two optimizations of interest are tempo-
rary copy-on-write (TCOW) and input alignment. TCOW,
like UVM’s page loanout, allows a process to lend wired
pages to the kernel without having to worry about the page
being modified or freed. TCOW differs from page loanout
in three key areas. First, while UVM allows pages to be
loaned out as either wired kernel memory, or a pageable
anonymous memory, TCOW can only be used with wired
kernel memory. Second, while UVM’s page loanout mech-
anism was implemented on top of UVM’s new anon-based
anonymous memory system that provides page granularity
with low overhead, TCOW was implemented as an add-on
to the old BSD VM system, and thus has to contend with all
the drawbacks of BSD VM’s object chaining mechanism.
Third, while we have demonstrated how page loanout can
be integrated with BSD’s mbuf-based IPC system, TCOW
is a prototype, and it has only be demonstrated with Genie
(completely bypassing the traditional BSD IPC system).
Input alignment is a technique that can be used to preserve
an API with copy semantics on data input while using page
remapping to actually move the data. In order to do input
alignment either the input request must be issuedbeforethe
data arrives so Genie can analyze the alignment require-
ments of the input buffer, or the client must query Genie
about the alignment of buffers that are currently waiting to
be transfered. Genie also has several techniques for avoid-
ing data fragmentation when the input data contains packet
headers from network interfaces.

Druschel and Peterson’s fast buffers (fbufs) kernel sub-
system is an operating system facility for IPC buffer man-
agement developed at the University of Arizona [7]. Fbufs,
an add-on to the Mach microkernel, provide fast data trans-
fer across protection domain boundaries. The fbuf system
is based on the assumption that IPC buffers are immutable.
The kernel and each process on the system share a fixed
sized area of virtual memory set aside as the “fbuf region”
where all fbufs must be mapped. The fbuf facility has two
useful optimizations: fbuf caching and volatile fbufs. In

fbuf caching, the sending process specifies the path the fbuf
will take through the system at fbuf allocation time. This
allows the fbuf system to reuse the same fbuf for multiple
IPC operations. Volatile fbufs are fbufs that are not write
protected in the sending process, saving some VM opera-
tions. The fbuf facility has several limitations. First, the
only way to get data from the filesystem into an fbuf is to
copy it. Second, if an application has data that it wants to
send using an fbuf but that data is not in the fbuf region,
then it must first be copied there. Third, it is not possible
to use copy-on-write with an fbuf. It should be possible
to combine UVM features such as page loanout and page
transfer with the fbuf concept to lift these limitations.

Pasquale, Anderson, and Muller’s Container Shipping
I/O system allows a process to transfer data without hav-
ing direct access to it [15]. Developed at University of Cal-
ifornia (San Diego), the container shipping API allows a
process to allocate a container, and the fill it with pointers
to data buffers. Once full, a container can be shipped to an-
other process or the kernel. Rather than receiving the data
directly, the receiving party receives a handle to the con-
tainer. The receiver can choose to map some of the con-
tainer’s buffers into its address space for modification, and
then it can unmap them. The container can be passed on
to another process. By using these operations processes
can pass data between themselves without mapping it into
their address space. A container shipping I/O system could
easily take advantage of UVM data movement mechanisms
when loading, unloading, and transferring containers.

3 UVM Overview

Our primary objective in creating UVM is to produce a vir-
tual memory system for a Unix-like operating system that
has flexible, general, and efficient VM-based data move-
ment facilities integrated into its design. The kernel’s
I/O and IPC systems can take advantage of these facili-
ties to reduce data movement overhead. Unlike many other
prototype-based VM research projects, our work has been
implemented as part of an operating system that is in wide-
spread use. Thus, we have designed our new virtual mem-
ory features so that their presence in the kernel does not
disrupt other kernel subsystems. This allows experimental
changes to be introduced into the I/O and IPC subsystem
gradually, thus easing the adoption of these features. Our
work centers around several major goals:

Allow a process to safely let a shared copy-on-write
copy of its memory be used either by other processes,
the I/O system, or the IPC system. The mechanism used
to do this should allow copied memory to come from a
memory mapped file, anonymous memory, or a combina-
tion of the two. It should provide copied memory either as
wired pages for the kernel’s I/O or IPC subsystems, or as
pageable anonymous memory for transfer to another pro-
cess. It should gracefully preserve copy-on-write in the

presence of page faults, pageouts, and memory flushes. Fi-
nally, it should operate in such a way that it provides access
to memory at page-level granularity without fragmenting or
disrupting the VM system’s higher-level memory mapping
data structures. Section 4.1 describes how UVM meets this
goal through the page loanout mechanism.

Allow pages of memory from the I/O system, the IPC
system, or from other processes to be inserted easily
into a process’ address space. Once the pages are inserted
into the process they should become anonymous memory.
Such anonymous memory should be indistinguishable from
anonymous memory allocated by traditional means. The
mechanism used to do this should be able to handle pages
that have been copied from another process’ address space
using the previous mechanism (page loanout). Also, if
the operating system is allowed to choose the virtual ad-
dress where the inserted pages are placed, then it should
be able to insert them without fragmenting or disrupting
the VM system’s higher-level memory mapping data struc-
tures. Section 4.2 describes how UVM meets this goal
through the page transfer mechanism.

Allow processes and the kernel to exchange large
chunks of their virtual address spaces using the VM
system’s higher-level memory mapping data structures.
Such a mechanism should be able to copy, move, or share
any range of a virtual address space. This can be a problem
for some VM systems because it introduces the possibil-
ity of allowing a copy-on-write area of memory to become
shared with another process. The per-page cost for this
mechanism should be minimized. Section 4.3 describes
how UVM meets this goals through the map entry passing
mechanism.

3.1 UVM Structure

When designing UVM, we focused our efforts on the as-
pects of the VM system that directly effect data move-
ment. For VM design elements not directly related to
data movement we reused useful parts of the BSD VM de-
sign to avoid reinventing the wheel and to ease UVM’s
integration into the NetBSD source tree. For example,
we reused BSD VM’s VM map structure and machine-
dependent pmap layer. Reusing the pmap layer allows us
to take advantage of existing machine-dependent work in
both BSD VM and Mach.

UVM’s machine-independent layer handles all high-
level VM functions. These functions are centered around
eight major machine-independent data structures, shown in
Figure 1.

All processes have avmspace structure that con-
tains pointers to the machine-dependent and machine-
independent data structures that define the mappings in
a process’ address space. Low-level machine-dependent
mappings are contained in the pmap structure. The
machine-independent mappings are stored in thevm map
structure. All processes and the kernel have their own

swap space

(points to process 4’s

vm_map

map entry

process 1 (init) process 4 (sh)

vmspace

pmap

vm_amap

vm_anon

vm_page (anon)

uvm_object

/sbin/init /bin/sh

vm_page (object)
process 4
from

uvm_pagerops

device vnode aobj

swap i/o fns

 amaps and objects)

Figure 1: UVM data structures at a glance. Note that there
is onevm aref data structure within each map entry struc-
ture. The page queues and object-offset hash table are not
shown.

vm map structure that contains a list of map entries that
define mapped areas in their virtual address spaces. Each
map entry maps an area of virtual address space to mem-
ory objects. In BSD VM, the map entry points to an ob-
ject chain, as described in Section 2.1. UVM, on the other
hand, has a two-level memory mapping scheme. Each map
entry points to an anonymous memory map (amap) and a
single, non-chained, memory object. The two-level map-
ping scheme greatly simplifies the implementation of mem-
ory lookup, object management, and UVM’s page granu-
lar data movement mechanisms. Note that some mappings
may only make use of one of the two layers.

For the upper-level amap layer, a map entry contains
a vm aref structure — a small structure that points to
an offset in an anonymous memory map (vm amap). An
amap describes an area of anonymous memory. The area
may have “holes” in it that allow references to fall through
to the underlying object layer. The amap structure contains
a list ofvm anon structures that are currently mapped into
it. Each anon represents a single virtual page of anonymous
memory. An anon’s data may reside in a residentvm page
of memory, or it may be paged out to to the swap area.
All UVM copy-on-write operations are handled through the
anon structure. While the design of UVM’s amap layer was
inspired by SunOS’s anonymous memory layer, there are a
few key differences (see Section 2.2).

For the lower-level object layer, a map entry contains a
pointer to auvm object structure. A UVM object rep-
resents a file, a zero-fill memory area, or a device that can
be mapped into a virtual address space. Each UVM ob-
ject contains a list ofvm page structures that belong to it
and a pointer to auvm pagerops structure. The UVM
pagerops are used to access backing store.

Finally, avm page structure describes a page of phys-
ical memory. These structures are allocated when the sys-
tem is booted. In addition to being referenced by UVM
objects and anons, pages are also referenced by the page
queues and the object-offset hash table. The page queues
are used by the pagedaemon to identify pages whose data
can be paged out so that the page can be used elsewhere.
The object-offset hash table allows UVM to quickly lookup
a page in an object.

3.2 UVM Data Structure Locking

Data structure locking is an important aspect of a virtual
memory system since many processes can access VM data
concurrently and we want to avoid data structure corrup-
tion and deadlock. As we have significantly changed the
data structures in UVM, we had to replace BSD VM’s lock-
ing strategy with a new one. UVM data structures must be
locked in the following order: map, amap, object, anon,
and finally the page queues. All the data structure locks are
spin locks with the exception of the map lock. Functions
that need to lock data structure in the wrong order must use
non-blocking lock attempts and give up (or start over) if the
non-blocking lock attempt fails.

3.3 UVM Copy-On-Write

Copy-on-write is achieved in UVM using the amap layer.
Copy-on-write data is originally mapped in read-only from
a backinguvm object. When copy-on-write data is first
written, the page fault routine allocates a new anon with a
new page, copies the data from theuvm object’s page
into the new page, and then installs the anon in the amap
for that mapping. When UVM’s fault routine copies copy-
on-write data from a lower-layeruvm object into an
upper-layer anon it is called a “promotion.” Once copy-on-
write data has been promoted to the amap layer, it becomes
anonymous memory. Anonymous memory also can be sub-
ject to the copy-on-write operation. An anon can be copy-
on-write copied by write-protecting its data and adding a
reference to the anon. When the page fault routine detects
a write to an anon with a reference count greater than one,
it will copy-on-write the anon.

4 UVM Data Movement

This section describes the design and function of UVM’s
page loan out, page transfer, and map entry passing in-

terfaces. All three interfaces allow a process to move
data using virtual memory operations rather than costly
data copies. These interfaces provide flexible and efficient
building blocks on which advanced I/O and IPC subsys-
tems can be built.

4.1 Page Loanout

Under a traditional kernel, sending data from one process
to another process or a device is a two-step procedure. First
the data is copied from the process’ address space to a ker-
nel buffer. Then the kernel buffer is handed off to its desti-
nation (either a device driver or the IPC layer). The copy of
the data from the process’ address space to the kernel buffer
adds overhead to the I/O operation. It would be more effi-
cient if I/O could be performed directly from the process’
address space, but in a traditional kernel it is necessary to
copy the data for three reasons: the data may not be resi-
dent in main memory, a process may modify its data while
the I/O operation is in progress, or the data may be flushed
or paged out by another process or the page daemon.

Page loanout is a feature of UVM that addresses these
issues by allowing a process to safely loan out its pages to
another process or the kernel. This allows the process to
send data directly from its memory to a device or another
process without having to copy the data to an intermediate
kernel buffer. This reduces the overhead of I/O and allows
the kernel to spend more time doing useful work and less
time copying data.

At an abstract level, loaning a page of memory out is
not overly complex. To loan out a page, UVM must make
the page read-only and increment the page’s “loan count.”
Then the page can safely be mapped (read-only). The com-
plexity of page loanout arises when handling the special
cases where some other process needs to make use of a
page currently loaned out. In that case the loan may have
to be broken.

4.1.1 Loan Types and Attributes

A page of memory loaned out by a process must come from
one of UVM’s two mapping layers. As shown in Figure 2,
a process can loan its memory out to either the kernel or
to another process. To loan memory to the kernel, UVM
creates an array of pointers to wiredvm page structures
that can be mapped into the kernel’s address space. To loan
memory to other processes, UVM creates an array of point-
ers to anon structures that can be entered into an amap that
belongs to the target process. The target process treats the
loaned memory like normal anonymous memory. There
are four possible types of loans: object to kernel, anon to
kernel, object to anon, and anon to anon. Note that it is
possible for a page from auvm object to be loaned to an
anon and then later loaned from that anon to the kernel.

Before a page can be loaned out, it must be made read-
only (immutable). This involves write-protecting in hard-

virtual address space

wired kernel pages
obj page

anon page

obj page

anon page page loanout to pageable
anonymous memory (anons)

page loanout to

Figure 2: Page loanout

ware all writable mappings of the page. However there are
many cases where pages are already read-only, for example
a video server may transmits data from a file that is mapped
read-only.

In order to modify data in a loaned out page, the kernel
must terminate or “break” the loan. Breaking a loan in-
volves allocating a new page off the free list, copying the
data from the loaned page to the new page, and then replac-
ing the old page with the new one. Note that the old page
remains allocated and immutable because it is still being
used for loanout. When replacing an old page with a new
one it is possible for the old page to become “ownerless”
because it is no longer associated with a memory object.
Ownerless pages are freed when the final loan on them is
dropped.

Memory pages loaned to the kernel have three important
properties. First, pages loaned to the kernel must be resi-
dent. If the data is on backing store then it is fetched be-
fore the loanout proceeds. Second, each page loaned to the
kernel is “wired” to prevent the pagedaemon from attempt-
ing to pageout a page loaned to the kernel while the kernel
is still using it. This is important because if the pagedae-
mon was allowed to pageout the page then the next time
the kernel accessed the loaned page an unresolvable page
fault would be generated (and the system would crash).
Third, pages loaned to the kernel are entered into the ker-
nel’s pmap with a special function that prevents page-based
pmap operations from affecting the kernel mapping. This
allows UVM to perform normal VM operations on the
loaned-out page without having to worry about disrupting
the kernel’s loaned mapping and causing an unresolvable
page fault.

Memory pages loaned from an object to an anon have
two important properties. First, auvm object’s page can
only be loaned to one anon at a time. Future loans to an
anon need only gain a reference to the anon the page is
already loaned to (rather than allocating a new anon to loan
to). Second, while most pages are referenced by either a
uvm object or an anon, pages loaned from an object to
an anon are referenced by both. Although both object and
anon reference the page, the object is always considered to
be the owner of the page. Thus, the object must be locked in
order to access the page’s fields. All data structure locking

must follow the locking protocol presented in Section 3.2.
An anon that has a page on loan from an object does not

hold a reference to that object. Thus, when locking data
structures, it is possible for the object to terminate between
the time the page’s object field is read and the time the lock
on the object is attempted. In order to prevent this, the
page queues must be locked before trying to lock the object.
Locking the page queues prevents the page’s loan count
from changing and thus ensures that the object cannot be
terminated until the page queues are unlocked.

4.1.2 Handling Loaned Out Pages

There are several places in UVM where loaned out pages
have to be treated specially. First, when locking an anon
that points to a page that is ownerless, the anon should take
over as owner of the page. This allows objects to donate
data to anons without the need for a data copy. Second,
when freeing a page with a non-zero loan count, the page
becomes ownerless and should not be freed until all loans
to it are terminated. Third, when there is a write fault on a
loaned page care must be taken to map in pages with a non-
zero loan count read-only. If the write fault is on a shared
mapping or an anon with a reference count of one, then the
loan must be broken before the fault can be resolved. Note
that page loanout to anons makes use of the copy-on-write
feature of UVM’s anonymous memory layer.

4.1.3 Using Page Loanout

Page loanout can be used in a number of ways. For ex-
ample, to quickly transfer a chunk of data from one pro-
cess to another the data can be loaned out to anons, and
those anons can then be inserted into an amap belonging to
the target process. Page loanout to the kernel can also be
used to improve both network and device I/O. For exam-
ple, when a process wants to send data out over the network
the kernel would normally copy the data from the process’
memory into kernel network buffers (mbufs). However, in-
stead of copying the process’ pages, the pages could be
loaned out to the kernel and then associated with mbufs,
thus avoiding a costly data copy. Page loanout can also be
used by devices. For example, an audio device could di-
rectly access pages of audio data loaned out from a user
process. This would eliminate the need to copy the data to
a private kernel buffer.

4.2 Page Transfer

Under a traditional BSD kernel, when the kernel wants to
move some of its data from a kernel buffer to a user pro-
cess’ virtual address space it uses thecopyout function.
This function copies the data word by word to a user buffer.
If the user’s buffer is not resident, then a page fault is trig-
gered and the the buffer is paged in before the copy is

virtual address space

donated kernel pages

page transfer from pageable
anonymous memory (anons)

anon page

anon page

anon page

anon page

page transfer from

Figure 3: Page transfer

started. This may result in the paged-in data being com-
pletely replaced by the copied data.

For large chunks of data all this copying can get ex-
pensive. Page transfer provides the kernel a way to work
around this data copy by allowing the kernel to inject pages
of memory into a process’ virtual address space. Page
transfer takes kernel pages or anons and installs them at
either a virtual address specified by the user or in an area
of virtual memory reserved for page transfer. UVM keeps
a pool of amaps, preallocated for reuse by the page transfer
mechanism, in the page transfer area of memory. Once a
page has been transfered into a process’ address space it is
treated like any other page of anonymous memory.

4.2.1 Page Transfer Types

There are two types of page transfer operations: kernel
page transfer and anonymous page transfer. These oper-
ations are shown in Figure 3. In kernel page transfer the
kernel donates pages to a process from one of its page
pools or from its address space. These pages become part
of that process’ anonymous memory. To perform kernel
page transfer the kernel first locates thevm page struc-
tures of the buffer being transfered. Next, if any of the
pages are mapped into the kernel’s address space those
mappings are removed. The pages are then removed from
any kernel-related data structures that they are associated
with. At this point a new anon is allocated and attached
to each page being transfered. Finally, the anons are in-
serted into the receiving process’ address space in one of
two ways. If the receiving process specified a target vir-
tual address range, then UVM first ensures that that range
of memory has amaps associated with it (allocating new
amaps if necessary) and then inserts the anons into the ap-
propriate amaps, replacing any previously allocated anons
in that area. On the other hand, if the receiving process did
not specify a target virtual address, then UVM locates free
space in the page transfer area for the anons and installs
them there. Once this is done the transfer is complete. The
pages are now part of the receiving process’ normal anony-
mous memory pool.

In anonymous page transfer the data being transfered is
already in anon structures. Typically these anons are the

result of a page loanout operation. In this type of page
transfer, UVM does not have to remove the pages from the
kernel or other processes. Instead, it only has to insert the
anons into the receiving process’ address space in the same
way as described above.

4.2.2 Disposing of Transfered Data

Processes receiving data via page transfer need to release
these pages when they are no longer needed in order to
avoid accumulating too much memory. This can be done
in three ways. First, a process may unmap transferred data
using the standardmunmap system call. A problem with
this is thatmunmap will free both the transfered anons and
the amap containing them. This forces UVM to allocate a
new amap the next time pages are transfered to to the same
virtual space. A second way to dispose of transfered data
is to use the newanflush system call. This system call
removes anons from a specified virtual address range with-
out freeing the amap allocated to it. This allows the amap
to be reused for future transfers. The final way to dispose
of transfered data is to push the anon pages down into the
object mapping layer. This can be done either by donating
the ownership of the anons’ pages to an object (establishing
a loanout relationship between the anon and the object), or
by freeing the anons and inserting the pages into an object.

4.2.3 Using Page Transfer

Kernel and anonymous page transfer can be used in several
ways. For example, kernel page transfer can be used with
device drivers or the IPC subsystem. For devices such as
audio cards, when recording the driver can allocate pages
from UVM to DMA into. These pages can then be trans-
fered into the application that is reading from the audio de-
vice. For the IPC system, mbuf data can be read with page
transfer. There are two sizes of mbufs: large and small. If
large mbufs are made page sized, then they may be eligible
for kernel page transfer. There are two possible types of
large mbufs. Large mbufs that have normal page-sized data
areas allocated out of the kernel are called “cluster” mbufs.
Large mbufs that refer to memory managed by other sub-
systems are called “external” mbufs. Pages from cluster
mbufs that have a reference count of one can easily be do-
nated to a process through page transfer. External mbufs
can refer to many types of memory including a network
interface card’s memory or pages loaned out from a pro-
cess. Pages that belong to networking hardware cannot
be transfered, but external mbufs that refer to loaned out
pages can be transfered by adding an additional loan to an
anon and then using that anon for anonymous page trans-
fer. This is an example of page loanout and page transfer
being used together to avoid data copies. Note that a new
API is required in order for a process to receive data with
page transfer.

Anonymous page transfer can be used with page loanout
to anons as part of an I/O or IPC mechanism. For exam-
ple, anonymous page transfer could be used for aligned
page-sizedread operations on a file. Rather than copy-
ing the data to anonymous memory withcopyout, an ob-
ject’s pages can be loaned to anons and those anons can
be transfered into the reading process’ address space. A
similar effect could be achieved usingmmap, but mmap
could fragment the high-level memory mapping structures.
Page transfer does not fragment high-level memory map-
pings because it provides page-level granularity.

4.3 Map Entry Passing

Under a traditional system, processes often exchange data
either through pipes or through shared memory. In BSD,
pipes are implemented as a connected pair of sockets.
When the sending process writes data into a pipe, the data is
copied from the sending process’ address space into a ker-
nel buffer (an mbuf). The mbuf is then placed on a queue
for the receiving process. When the receiving process reads
from the pipe, the data is copied from the queued mbuf into
the receiving process’ buffer. Thus, data transmitted over a
pipe is copied twice.

Shared memory can be established in three ways. First,
the System V shared memory interface allows a process
to create a shared segment of anonymous memory. Each
segment of shared memory has a size and a protection.
Once created, any process with the appropriate permissions
can attach the shared memory segment into their address
space. The second way shared memory can be established
is through themmap system call. Changes made to files that
have been mappedMAP SHARED will be seen by all pro-
cesses accessing the file. The final way shared memory can
be established occurs is when a forking process arranges
for all or part of its memory to be shared with the child
process.

UVM provides a new way for processes to exchange
data: map entry passing (shown in Figure 4). For large
data sizes, this is more efficient than pipes because data is
moved without being copied. Map entry passing also has
several advantages over traditional memory sharing mech-
anisms. Unlike System V shared memory, map entry pass-
ing is not restricted to anonymous memory. Map entry
passing allows a range of virtual addresses to be shared,
copied, or moved. This range can include multiple memory
mappings and unmapped areas of virtual memory. Map en-
try passing also does not require the services of the filesys-
tem layer, unlikemmap. While page loanout and page
transfer have page-level granularity, map entry passing has
mapping-level granularity.

4.3.1 Map Entry Passing Implementation

The map entry passing mechanism operates as follows. Vir-
tual space is first reserved in the target map for the passed

address space
target virtual

address space

map entry passing
(copy, share, or donate)

source virtual

Figure 4: Map entry passing

memory. Then the source map’s entry list is searched for
the first map entry that contains the starting virtual address.
There are four possible ways for a receiving process to get
passed memory. The memory can be shared, copied (with
copy-on-write), donated, or donated with zero-fill. Donat-
ing the memory causes it to be removed from the sending
process’ virtual address space and placed in the receiving
process’ space. After the memory has been passed the vir-
tual space in the sending process will be unmapped. Donate
with zero-fill is the same as donate, except that rather than
leaving the exported range of virtual space unmapped after
it has been passed it is reset to be zero-fill memory.

Each source map entry that is in the virtual range is
copied into a list of map entries that will be inserted in
the destination map (if the memory is being donated rather
than copied or shared then the source map entry is removed
from the source map). When the end of the virtual range is
reached, the new map entries are inserted in the destination
map at the virtual address previously reserved.

The function that extracts the map entries from the
source map has a special mode of operation that is used
for short-term shared map entry passing of a small num-
ber of pages. This mode is called “quick reference mode.”
Normally, using map entry passing to pass small areas of
memory would be inefficient because it would cause the
source map’s larger entries to be fragmented into smaller
mappings in order to satisfy the map entry passing requests.
Quick reference mode takes advantage of the fact that the
passed memory is going to be briefly used and then un-
mapped. This allows UVM to relax the management of ref-
erences to object and amap structures and avoid fragment-
ing the source map. Quick references are currently used by
theptrace system call to read and write the memory of a
process that is being debugged.

4.3.2 Using Map Entry Passing

Map entry passing can be used to exchange data between
processes and the kernel. For example, we built a memory

export/import IPC facility on top of UVM’s map entry
passing mechanism that allows a process to export ranges
of its virtual address space to other processes. A process
with the appropriate permission can import one of these
virtual address ranges into its address space. This IPC fa-
cility is similar to System V shared memory, however it is
more generalized.

5 Measurements

In this section we describe five sets of tests designed to
measure the performance of UVM’s new features. The re-
sults of these measurements show that page loanout, page
transfer, and map entry passing can significantly improve
I/O and IPC performance over traditional systems.

All our tests were performed on 200 MHz Pentium Pro
processors running NetBSD 1.3A with either UVM or BSD
VM. Our Pentium Pros have a 16K level-one cache, a 256K
level-two cache, and 32MB of physical memory. The main
memory bandwidth of our Pentium Pros is 225 MB/sec for
reads, 82 MB/sec for writes, and 50 MB/sec for copies, as
reported by thelmbenchmemory bandwidth benchmarks
(version 1.2) [12].

5.1 Page Loanout Performance

A convenient place to measure the effect of page loanout
on I/O is in the transfer of data from a user process to a
device. In a traditional system, this would involve copying
the data from the user’s address space to a kernel buffer,
and then performing I/O on that buffer. With page loanout,
such an I/O operation could be done by loaning the pages
from the user’s address space directly to the device, thus
avoiding the data copy. Networking devices are often cho-
sen for such measurements, so we measured the effect of
page loanout on the speed with which data can be pumped
through the BSD networking subsystem.

One problem with measuring the performance of page
loanout with the networking subsystem is that current pro-
cessors can easily generate data faster than current gen-
eration network interfaces can transmit it2. For example,
the Pentium Pro processor on our test machine can easily
swamp the network interfaces we have available (100Mbps
fast Ethernet and 155Mbps ATM cards). This results in ei-
ther the transmitting process being stalled until the network
interface layer can catch up, or in data being discarded at
the network interface layer due to a full network queue. If
one of these network interface cards was used in measuring
page loanout, any positive results achieved by page loanout
would be seen as a reduction in processor load rather than
increased bandwidth. In order to avoid being limited by
network interface hardware a new “null” protocol layer was
introduced into the BSD kernel. This protocol discards data

2Next-generation network interfaces such as Gigabit Ethernet and
higher-speed ATM interfaces can transmit data at higher speeds.

1 10 100 1000 10000
write size (kbytes)

0

200

400

600

800

ba
nd

w
id

th
 (

M
B

/s
ec

)
copy
loan

4K

Figure 5: Comparison of copy and loan procedures for
writing to a null socket

rather than passing it to a network interface. This allows the
data transfer overhead of copying verses page loanout to be
directly measured.

To measure the effect of page loanout we wrote a test
program that uses the null protocol to transmit large chunks
of data through the socket layer. The actions performed by
the test program are similar to programs such as ftp, web,
and video servers. Such programs operate by opening data
files and transmitting the file’s content over the network.
The test program transmits data using either the normal
write system call to copy data from user space into kernel
buffers, or using a modifiedwrite system call that moves
user data into the networking system through page loanout.

The test program was run using a two megabyte buffer
that was transmitted 1024 times. Thus, two gigabytes of
data was transmitted for each run of the test program. Each
run of the program was timed so that the bandwidth of the
null socket could be determined. The write size was varied
from 1K to 2048K. The results of the test using copying
and page loanout are shown in Figure 5.

For write sizes that are less than the hardware page size
(4K), copying the data produces a higher bandwidth than
using page loanout. This is due to the page loanout mech-
anism being used to loan out pages that are only partially
full of valid data. For example, when the write size is 1K
for each page loaned out there is 3K of data in the page
that is not being used. Once the write size reaches the
page size, page loanout’s bandwidth overtakes data copy-
ing. As the write size is increased to allow multiple pages
to be transmitted in a singlewrite call, the data copying
bandwidth increases until the write size reaches 32K. The
data copy bandwidth never exceeds 172 MB/sec. Note that
the data copy benefits from the fact that a streaming socket
was used. This allows the socket layer to break up large
writes into smaller ones that fit into the processor’s cache.
If a datagram socket is used, then the data copy bandwidth
drops to 50 MB/sec, the bandwidth limit obtained from lm-

bench. Meanwhile, the loanout bandwidth rises sharply as
the write size is increased. When the write size is 32K
the loanout bandwidth is 560 MB/sec. The loanout band-
width levels off at 750 MB/sec when the write size is 512K.
Clearly, page loanout improved the I/O performance of the
test program by reducing data copy overhead. Thus, ap-
plications that transmit data without touching it, such as
the multimedia video server described in [4], could benefit
from page loanout.

5.2 Page Transfer Performance

Page transfer moves data in the opposite direction than
page loanout does. In page loanout, a process loans its data
out to some other process or the kernel. In page transfer, a
process receives pages from other processes or the kernel.
The pages received may either be loaned from another pro-
cess or donated from the kernel. The benefit of using page
transfer is that the transferred data is moved into the receiv-
ing process’ virtual address space without the overhead of
a data copy.

The effect of page transfer on the overhead of I/O oper-
ations can be measured using the kernel’s networking sub-
system in a way that is similar to the procedure used to
measure the effect of page loanout. In a traditional system,
when data is read from a socket it is copied from a ker-
nel mbuf into the receiving process’ virtual address space.
With page transfer, the network read operation on larger
chunks of data can be done by using page transfer to trans-
fer a large mbuf’s data area from the kernel directly into
the receiving process’ virtual address pace, bypassing the
copy. For this to be feasible, the kernel should be config-
ured so that the buffer size of a cluster mbuf is equal to
the system page size. To measure the effect of page trans-
fer a new “null” socket read call was introduced into the
BSD kernel. When the socket layer detects a null socket
read, it allocates an mbuf chain of the requested size (con-
taining random data) and uses it to satisfy the socket read
request. This allows us to directly measure the effect of
page transfer on I/O overhead by observing the bandwidth
of null socket reads. Note that unused portions of a clus-
ter mbuf’s data area are zeroed to ensure data security (this
is a concern when we are transferring real data rather than
null-socket data).

We wrote a test program that uses null socket reads to re-
ceive large chunks of data through the socket layer to mea-
sure page transfer performance. Thus, the test program is
similar to programs that receive large chunks of data from
the network or from other processes. The test program was
used to transfer 1GB of data first using data copying and
then using page transfer. The read size was varied from
4K (one page) to 2048K, and the bandwidth was measured.
The results of the test are shown in Figure 6.

When copying data, smaller reads produce a greater
bandwidth. As the read size increases, the null socket read
bandwidth decreases from 315 MB/sec to 50 MB/sec. This

1 10 100 1000 10000
read size (kbytes)

0

200

400

600

800

ba
nd

w
id

th
 (

M
B

/s
ec

)
copy
transfer

4K

Figure 6: Comparison of copy and transfer procedures for
reading from a null socket

decrease is due to data caching on the Pentium Pro. Mem-
ory accesses to the cache are significantly faster than mem-
ory accesses to main memory. If an application’s buffer
entirely fits within a cache then memory references to it
will be faster than the bandwidth of main memory. For
example, when the test program uses 4K buffers both the
source and destination buffers of the data copy fit within
the level-one cache producing a bandwidth of 315 MB/sec.
When the size of the test program’s buffers are increased
to 8K they no longer fit within the level-one cache, but
they do fit within the level-two cache. This results in a
bandwidth drop to 225 MB/sec. The bandwidth remains
nearly constant for read sizes from 8K to 64K. However,
between 128K and 256K the bandwidth drops to 50 MB/sec
as the size of the data buffers becomes larger than the level-
two cache. Finally, the bandwidth eventually levels out at
50 MB/sec (the same value we got fromlmbench’s mem-
ory copy benchmark). The 4K read size gets the full benefit
of the high bandwidth of the Pentium Pro’s level-one cache
since it was the only process running on the system when
the measurements were taken (so its data was always fresh
in the cache).

On the other hand, the cache does not play as great
a role in page transfer. The bandwidth starts around
190 MB/sec for page sized transfers, and then increases up
to 730 MB/sec for a 1MB page transfer. The final dip in
the page transfer curve is due to the cache. As the transfer
size gets larger, the page transfer code touches more kernel
data structures, and at some point this causes touched data
structures to exceed the size of the level one cache.

5.3 Using UVM to Transfer Data Between
Processes

In the previous two sections we discussed the effect of page
loanout and page transfer on the movement of data between
a process and a network interface. In this section, we exam-

ine using UVM to move data between two processes using
a pipe. In a traditional system, a pipe is implemented as a
pair of connected sockets. Each byte of data written to the
pipe is copied twice. UVM’s page loanout and page trans-
fer mechanisms can be used to reduce kernel overhead by
eliminating both these copies.

The kernel’s socket layer was further modified in order to
use UVM to eliminate data copies when using pipes. While
the page loanout modifications described earlier was suffi-
cient for use with a pipe, the page transfer modifications
for the null socket read operation were not. In order to
support page transfer for pipes, the socket receive function
was modified to use page transfer on large mbufs when re-
quested. The modifications allows the socket layer to use
page transfer for both cluster mbufs and external mbufs
whose buffers are pages loaned out from some other pro-
cess.

To measure the effect of both page loanout and page
transfer on the transfer of data between two processes over
a pipe, we wrote a test program that operates as follows.
The parameters are parsed and a pipe is created. A child
process is then forked off. The child process writes a spec-
ified amount of data into the pipe, using page loanout if
requested. Once the data is written the child process closes
the pipe and exits. The parent process reads data out of the
pipe, using page transfer if requested. After a read opera-
tion, the data is released using theanflush system call.
Once all data is read, the parent process exits. The test
program takes as parameters the amount of data to transfer
over the pipe and the read and write sizes.

We used the test program to produce four sets of data.
For each set of data we transfered 1GB of data varying the
read and write sizes from 4K to 2048K. The four data sets
are:

copy: Data was copied on both the sending and receiving
ends of the pipe.

transfer: Data was copied on the sending side and moved
with page transfer on the receiving side of the pipe.

loan: Data was loaned out on the sending side and copied
on the receiving side of the pipe.

both: Data was loaned out on the sending side and moved
with page transfer on the receiving side of the pipe.

The results of this test are shown in Figure 7.
For page sized data transfers (4K) copying produces a

bandwidth of 40 MB/sec, while page transfer and page
loanout produce bandwidths of 33 MB/sec and 45 MB/sec,
respectively. Using both page transfer and page loanout at
the same time with page sized transfers produces a band-
width of 70 MB/sec.

As the transfer size is increased, the bandwidth of data
copying drops and levels off at 26 MB/sec due to the effects
of the cache. Meanwhile, the bandwidth of both transfer

1 10 100 1000 10000
transfer size (kbytes)

0

100

200

300

400

500

ba
nd

w
id

th
 (

M
B

/s
ec

)

copy
transfer
loan
both

Figure 7: Comparison of copy, transfer, loan, and both pro-
cedures for moving data over a pipe

and loanout levels off at 43 MB/sec as the transfer size is in-
creased. Since both these tests still have data copying at one
end of the pipe, they are effected by caching in the same
way as data copying, however their bandwidth is almost
double that of copying because they are only touching the
data on one end. The page loanout curve rises higher than
the page transfer curve in mid-range transfer sizes because
page loanout has less overhead than page transfer. Page
transfer has the added complication of having to replace the
data page removed from cluster mbufs with another page.
The bandwidth of the test in which both loanout and trans-
fer are used rises sharply and levels off at 400 MB/sec for
large transfer sizes. In this case the data is not touched or
copied at all, instead a copy-on-write mapping to the send-
ing process’ page is added to the receiving process.

5.4 Map Entry Passing Performance

Data passing between programs through pipes or sockets
is quite common on Unix-like systems. If an application
passes large amounts of data over a pipe, it might benefit
from map entry passing. To measure the effect of map entry
passing, we wrote two test programs that pass a fixed-sized
chunk of data between two processes a specified number
of times. One test program passes data between processes
by sending it over a local socket. This causes the kernel to
copy the data from the sending process into an mbuf chain,
and then to copy it from the mbuf chain to the receiving
process. The other test program passes data between pro-
cesses by using map entry passing. The test program can
optionally “touch” the data after it arrives to simulate data
processing.

Each test program was run using transfer sizes ranging
from 4K to 4096K. The number of times the data was trans-
ferred from parent to child process and back was adjusted
so that the test program ran for at least thirty seconds. Each
run of the program was timed so that the bandwidth could

1 10 100 1000 10000
transfer size (kbytes)

0

20

40

60

80

100

ba
nd

w
id

th
 (

M
B

/s
ec

)

copy
m.e.p.

Figure 8: Comparison of copy and map entry passing
(m.e.p.) transferring memory between two processes

be determined.
As shown in Figure 8, the bandwidth curves for the test

program that uses data copying via the socket pair start off
near 35 MB/sec for a one page transfer size. The bandwidth
decreases as the transfer size increases due to caching ef-
fects. The bandwidth of the data-copying tests level off at
12 MB/sec. On the other hand, the bandwidth curve for the
map entry passing test program peaks around 96 MB/sec
for a transfer size of 64K and then caching effects on ker-
nel VM data structures cause it to fall and level off at
34 MB/sec.

If the application does not touch the data after it is trans-
fered then the bandwidth for data copying levels off at
18 MB/sec rather than 12 MB/sec. On the other hand, if
the map entry passing test program does not touch the data,
then the bandwidth rises rapidly, reaching 18500 MB/sec
for a transfer size of 4096K. This high bandwidth occurs
because the data being transfered is accessed neither by
the application program nor the kernel, so the data is never
loaded into the processor from main memory.

Another test program we wrote combines the use of map
entry passing with page loanout. The test program consists
of three processes. The first process allocates and initializes
a data buffer of a specified size and then sends it to the
second process. The second process modifies the data and
then sends it to the third process. The third process receives
the data and writes it to a null protocol socket. Then the first
process can generate another buffers worth of data. Such a
data pipeline application is similar to the multimedia “I/O-
pipeline model” described in [15].

In the test program the data can be exchanged between
the processes either with data copying or with map entry
passing. The final process can write the data out with either
data copying or page loanout. We ran the test program with
transfer sizes from 4K (one page) to 4096K. The number
of transfers was adjusted so that the test program ran for at
least thirty seconds. The results of the the tests are shown

1 10 100 1000 10000
transfer size (kbytes)

0

10

20

30

40

50

ba
nd

w
id

th
 (

M
B

/s
ec

)

copy
pipeline

Figure 9: Comparison of copy and map entry passing/page
loanout pipeline

in Figure 9.

When using data copying, the bandwidth started at
20 MB/sec and then dropped and leveled off at 11 MB/sec
once the cache size was exceeded. When using map
entry passing and page loanout, the bandwidth starts at
11 MB/sec for a page-sized transfer, and increases to a peak
of 40 MB/sec for a 64K transfer size. It then levels off at
26 MB/sec as the kernel data structures exceed the size of
the cache.

5.5 UVM Compared to Related Work

Comparing the performance of UVM data movement
mechanisms with related work is difficult due to the wide
variety of hardware platforms and different testing pro-
cedures used across projects. However, we can make
some rough estimates of relative performance improve-
ments based on our results and results published in the liter-
ature. For example, the Solaris zero-copy TCP mechanism
with checksum in hardware [5] produces a factor of 1.4 im-
provement over data copying. UVM’s page loanout facility
(without the overhead of protocol processing) produces a
factor of 2.6 improvement for the same transfer size. In
the Container Shipping project [1] the performance of an
IPC pipe using the container shipping mechanism to send,
receive, and both send and receive was compared to the
performance of using data copying. The reported improve-
ment factors are 1.2, 1.6, and 8.3, respectively. A com-
parable experiment under UVM using page loanout, page
transfer, and both mechanisms at the same time produced
improvement factors of 2.1, 1.7, and 14. Other projects re-
port results that appear to be comparable. Our rough com-
parisons show that UVM produces improvements on the
same order of magnitude as the related work.

6 Conclusions

UVM reduces or eliminates the need to copy data thus re-
ducing the time spent within the kernel and freeing up cy-
cles for application processing. Unlike the approaches that
focus exclusively on the networking subsystem, our ap-
proach provides a general solution that can improve effi-
ciency of the entire I/O subsystem.

UVM provides the BSD kernel with three new mech-
anisms that allow processes to exchange and share page-
sized and mapping-sized chunks of memory without data
copies: page loanout, page transfer, and map entry passing.
While it would be foolish to use these mechanisms on small
data chunks, our measurements clearly show that for larger
chunks of data they provide a significant reduction in ker-
nel overhead as compared to data copying. For example:
UVM’s page loanout mechanism provides processes with
the ability to avoid costly data copies by loaning a copy-
on-write copy of their memory out to the kernel or other
processes. UVM’s page transfer mechanism allows a pro-
cess to receive anonymous pages of memory from other
processes or the kernel without having to copy the data.
UVM’s map entry passing mechanism allows processes to
easily copy, share, and exchange chunks of virtual memory
from their address space. In addition to being used sepa-
rately, we have shown that these mechanisms can be used
together.

UVM is now part of the standard NetBSD distribu-
tion and is scheduled to replace the BSD VM system for
NetBSD release 1.4.(Note, some of the data movement
related code is currently being merged in, all should be
merged in before the 1.4 release and before OSDI.)UVM
already runs on almost all of NetBSD’s platforms and is
expected to run on every NetBSD platform soon. A port to
OpenBSD is also expected.

UVM can improve the performance of current applica-
tions through the page loanout mechanism and secondary
improvements to the VM. Further work to introduce APIs
for page transfer and map entry passing will allow applica-
tions to take advantage of these mechanisms as well.

References

[1] E. Anderson.Container Shipping: A Uniform Inter-
face for Fast, Efficient, High-Bandwidth I/O. PhD
thesis, University of California, San Diego, 1995.

[2] J. Barrera. A fast Mach network IPC implementa-
tion. In Proceedings of the USENIX Mach Sympo-
sium, pages 1–11, November 1991.

[3] J. Brustoloni and P. Steenkiste. Copy emulation in
checksummed, multiple-packet communication. In
Proceedings of IEEE INFOCOM 1997, pages 1124–
1132, April 1997.

[4] M. Buddhikot, X. Chen, D. Wu, and G. Parulkar. En-
hancements to 4.4 BSD UNIX for networked mul-
timedia in project MARS. InProceedings of IEEE
Multimedia Systems’98, June 1998.

[5] H. Chu. Zero-copy TCP in Solaris. InProceedings of
the USENIX Conference, pages 253–264. USENIX,
1996.

[6] C. Cranor. Design and Implementation of the UVM
Virtual Memory System. PhD thesis, Washington Uni-
versity, August 1998.

[7] P. Druschel and L. Peterson. Fbufs: A high-
bandwidth cross-domain transfer facility. InProceed-
ings of the Fourteenth ACM Symposium on Operating
Systems Principles, December 1993.

[8] J. Dyson, D. Greenman, et al. The FreeBSD VM sys-
tem. Seehttp://www.freebsd.org for more
information.

[9] K. Fall and J. Pasquale. Exploiting in-kernel data
paths to improve I/O throughput and CPU availabil-
ity. In Proceedings of USENIX Winter Conference,
pages 327–333. USENIX, January 1993.

[10] R. Gingell, J. Moran, and W. Shannon. Virtual mem-
ory architecture in SunOS. InProceedings of USENIX
Summer Conference, pages 81–94. USENIX, June
1987.

[11] J. Hennessy and D. Patterson.Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann,
San Francisco, CA, 2nd edition, 1996.

[12] L. McVoy and C. Staelin. lmbench: Portable tools
for performance analysis. InProceedings of USENIX
Conference, pages 279–294. USENIX, 1996.

[13] J. Moran. SunOS virtual memory implementation.
In Proceedings of the Spring 1988 European UNIX
Users Group Conference, April 1988.

[14] J. Ousterhout. Why aren’t operating systems getting
faster as fast as hardware? InProceedings of USENIX
Summer Conference, pages 247–256. USENIX, 1990.

[15] J. Pasquale, E. Anderson, and P. Muller. Container
Shipping: Operating system support for I/O intensive
applications.Computer, 27(3), March 1994.

[16] R. Rashid, A. Tevanian, M. Young, D. Golub,
R. Baron, D. Black, W. Bolosky, and J. Chew.
Machine-independent virtual memory management
for paged uniprocessor and multiprocessor architec-
tures. IEEE Transactions on Computing, 37(8), Au-
gust 1988.

[17] D. Solomon. Inside Windows NT. Microsoft Press,
2nd edition, 1998. Based on the first edition by Helen
Custer.

[18] L. Torvalds et al. The Linux operating system. See
http://www.linux.org for more information.

[19] M. Young, A. Tevanian, R. Rashid, D. Golub, J. Ep-
pinger, J. Chew, W. Bolosky, D. Black, and R. Baron.
The duality of memory and communication in the im-
plementation of a multiprocessor operating system. In
Proceedings of the Eleventh ACM Symposium on Op-
erating Systems Principles, pages 63–76, November
1987.

