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Abstract

The problem this paper addresses is how to modify an existing operating system’s I/O subsystem
to support new high-speed networks and high-bandwidth multimedia applications that will play an
important role in future computing environments. The proposed I/O subsystem is called universal
continuous media I/O (UCM I/O). This paper will cover the preliminary design of UCM I/O, some of
the trade-offs and issues that need to be addressed in order to implement UCM I/O, and a a summary
of work in progress.
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1. Introduction

As computers become more common and powerful, new applications are being proposed. Applications in
areas such as distributed computing, imaging, and multimedia are becoming more sophisticated. In order
to run properly, many of these new applications require very high levels of performance from the entire
computer system. While CPUs and networks have been getting faster at a remarkable rate and can meet the
needs of new applications, the I/O system is lagging behind and is starting to become a major bottleneck for
these applications.

There are three major problems with the current I/O system:

• The I/O system has poor performance. Solutions to this problem have been devised for special cases
(e.g. network I/O), but they have not been generalized for all forms of I/O.

• The I/O subsystem lacks abstractions to support new classes of applications such as those that make
use of continuous media.

• The I/O applications programmer interface (API) has become too unwieldy. There are too many I/O

calls and they are often non-uniform.

To address these I/O subsystem issues, our high level objective is to modify the traditional Unix operating
system’s I/O subsystem to support new high-speed networks and high-bandwidth multimedia applications
and devices. The proposed I/O subsystem is called universal continuous media I/O (UCM I/O). UCM I/O is
called “universal” because it combines all types of I/O into a single abstraction. This abstraction consists of
two parts: the API and the buffer management system. In order to achieve this objective, we will introduce
four novel ideas: a new I/O API with improved semantics, the use of polling interrupts to improve the han-
dling of continuous media I/O streams, a SuperCall mechanism that allows an application to download I/O

critical code into the kernel, and a buffer management system that allows efficient page remapping and shared
memory mechanisms to be used between user programs and the kernel (and its devices).

This paper contains the preliminary design of UCM I/O. It details some of the trade-offs and issues that
must be considered in order to implement UCM I/O, and it also contains a summary of work in progress.
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This paper is organized as follows: Section 2 motivates the need for UCM I/O. Section 3 describes the
problems UCM I/O is expected to solve. Section 4 contains an overview of the proposed solutions to the
problems described in Section 3. Section 5 describes the functions and data structures that make up UCM

I/O’s application program interface (API). Section 6 presents the design of UCM I/O’s buffer management
and its interaction with the virtual memory system. Section 7 describes research related to UCM I/O. Finally,
Section 8 contains the current status of the work in progress.

2. Motivation and Environment

This section defines the hardware and software environment in which we plan to work. Assumptions made
in this section will hold throughout the paper. In a majority of cases, these assumptions will merely reflect
either the state of the art or future trends widely accepted by the research community.

Network Layer. At the network layer, we assume the existence of high speed (150 Mbps and more)
packet switched networks such as ATM networks. Prototype testbeds of such networks already exist, and
commercial products have already appeared during the past year. We shall also assume that these fast packet
switched networks will provide support for multipoint connections, and provide a specified quality of service
(QOS).

Internet and Transport Layer. At the internet and transport layer we shall assume the presence of
protocols that can provide support for multipoint connections with statistical resource reservations and appli-
cation oriented flow and error control. Because many research efforts (including our research group’s work)
are aimed at either creating new internet and transport protocols or extending existing ones to provide such
services [5, 25, 9, 19, 23, 24, 18, 22, 11, 4], our assumptions about the underlying protocols are realistic.

Application Layer. The specific class of applications targeted in this research include point-to-point as
well as multipoint multimedia applications. Multimedia applications are characterized by their requirement
for transport of multiple synchronized media streams, possibly between a number of simultaneously partic-
ipating and widely distributed hosts. Some of these streams (typically video streams) have high bandwidth
and stringent real-time QOS requirements.

It is important to note that these target multimedia applications involve a varied amount of user interaction
and may require not only high bandwidth but significant computing power as well [14, 15, 2]. Unlike first
generation multimedia system that used special hardware to bypass the operating system to directly display
multimedia data, future multimedia workstations and servers must have operating systems that can handle
multimedia streams directly so that the application can manipulate and transform the data.

Figure 1a shows several types of end-points that I/O subsystems need to support. These endpoints include
traditional I/O endpoints such as disks and tapes and traditional IPC endpoints such as another process. They
also include new multimedia devices such cameras and graphic displays. These devices require periodic
transfer of data with stringent performance guarantees.

All these types of I/O endpoints can be connected in many different ways. Figure 1b shows some ex-
ample configurations. These examples include traditional I/O configurations such as process-to-process or
process-to-network. Multimedia applications require new types of configurations, such as local-device-to-
local-device and local-device-to-network, in which the CPU is not involved in the data transfer. When the
CPU is not involved in data transfer, then the I/O API needs to provide a way to set up or “join” the two
endpoints so that they can do I/O on their own. The UCM I/O system includes this type of I/O abstraction in
its API.

The I/O subsystem in the operating system is complex and interacts with many other OS components such
as memory management, network protocols, scheduling, and device drivers, as shown in Figure 2. Thus,
modifications to the I/O subsystem involves upgrading other parts of the OS as well. The current Unix I/O

environment is not equipped to support all types of I/O efficiently, as explained in the next section.
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Figure 1: UCM I/O connections
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Figure 2: Types of I/O devices

3. Problem Statement

The current Unix I/O API is a cross between file I/O and socket IPC I/O. While this API is flexible and
compatible with older versions of Unix, it has a number of weaknesses that need to be addressed for future
applications. These weaknesses include the API’s unwieldiness, performance problems in the I/O subsystem,
and little support for continuous media. The rest of this section describes these weaknesses in more details.

3.1. Non-uniform API with too many functions

An API is uniform if it has the same interface for all types of I/O. The current API is non-uniform. Figure 3
shows an example of this non-uniformity. The shaded box on the left contains six functions that are part of
the socket interface for sending and receiving data. The shaded box on the right contains four functions that
are part of the file (and device) I/O API. For network I/O any of the system calls in the boxes can be used to
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socket file

bind(s,name,len)
connect(s,name,len)
getpeername(s,name,len)
getsockname(s,name,len)
getsockopt(s,lvl,name,addr,len)
setsockopt(s,lvl,name,addr,len)

shutdown(s,how)
listen(s,backlog)

socket(dom,type,proto)
socketpair(dom,type,proto,sv)
recv(s,buf,len,flags)
recvfrom(s,buf,len,flags,from,len)
recvmsg(s,msg,flags)
send(s,buf,len,flags)
sendto(s,buf,len,flags,to,len)
sendmsg(s,msg,flags)

access(path,mode)
close(fd)
creat(name,mode)
lseek(fd,off,whence)
truncate(path,len)
ftruncate(path,len)
read(f,buf,len)
readv(fd,iov,cnt)
write(fd,buf,len)
writev(fd,iov,cnt)

accept(s,addr,len)

msg = a socket name
an iov (like readv/writev)
access rights

readlink, rename, rmdir, select, stat, lstat, fstat, symlink, unlink
others: chdir, chmod, chown, chroot, execve, link, ioctl, mkdir, mknod,

Figure 3: The current API

send and receive data. However, for file I/O only the the four functions on the right can be used to transfer
data. Thus, the current I/O API is non-uniform.

Figure 3 lists the I/O system calls in the current API. These system calls can be divided into socket system
calls, file system calls, and other system call that change the shape and attributes of the file system tree. The
system calls in the shaded boxes are calls that input or output data.

A non-uniform interface leads to extra system calls that perform the same function, but can only be used
by certain types of I/O. This requires that there be a lot of extra code in the kernel to support all the interfaces
and to check to make sure the right interface is being used. The more extra code in the kernel, the more effort
is required to support it. Also, non-uniform interfaces are sometimes harder to learn, and users will learn the
minimal amount required and may miss out on features that can be used to improve I/O speed. For example,
a write system call passes one buffer to operating system, while the writev system call can pass multiple
buffers in one call. If an application has many small buffers, it can reduce its system call overhead by using
writev to pass all the buffer in at once.

While the API needs to present a uniform interface to the application, it must be able to handle non-
uniformity in the layers below it. For example, it must be able to cope with both in-band and out-of-band
control information, it must be able to move data in different device dependent ways, it must handle I/O to
devices that have caching and devices that do not need caching, and it should be able to handle each type of
I/O stream’s state information as well.
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3.2. Performance Problem

Adding layers of software to a system reduces the bandwidth available to applications. Usually, at the hard-
ware level there is sufficient bandwidth, however, the effective bandwidth at higher layers is much smaller.
For example, in the case of file I/O, after data passes through the device driver layer, the disk file system code,
the virtual file system code (VNODE), and finally the system call layer the bandwidth seen by the application
is significantly reduced because of the extra overhead imposed by these layers. For network I/O, as the data
passes through the network driver layer, the protocol layer, the socket/IPC layer, and the system call layer the
same problem occurs. For a network filesystem, the problem is even worse since the data has to pass through
both filesystem and network code.

3.2.1. The API and Data Copying. The current API and buffer management scheme make it difficult
to avoid data copying for both the reading and writing of data. Consider writing data to an I/O descriptor.
The application does a write system call with the buffer it wants to write out as an argument. The kernel
processes the write system call, starts I/O on the buffer, and resumes the application. If the kernel does not
copy the buffer and the application reuses the buffer, it is possible that the application will overwrite part of
the buffer being sent, thus corrupting the data. To solve this problem, the kernel must either copy the data,
or protect the pages than contain the data while the data is in transit. Because this involves virtual memory
operations, it can be expensive.

The same sorts of problems arise when reading data. For example, consider an application that is reading
data from a network connection. The application passes the address of the buffer in its address space that is
to receive data to the kernel with a read system call. If the data has already arrived or is cached it must be
copied into the application’s buffer. If the data has not arrived yet then the application must sleep waiting for
data. When the network interface receives the data it has no way of knowing which process the data is for
(unless you have an advanced ATM interface that does multiplexing on VCI). So, the network interface puts
the inbound data into an arbitrary kernel buffer. To store the data into the application’s buffer the kernel must
copy it.

Past work to solve these problems in the I/O system has been specialized and not integrated into the
operating system. For example, in some implementations of the network file system (NFS) the overhead
of extra software layers is bypassed by having a special non-layered protocol function that does all of UDP

and IP in one pass. There are also systems that attempt to use virtual memory to reduce copying. Some of
these systems, such as the device driver for the SGI FDDI card, rely on adding extra semantics to standard
read/write system calls just for networking connections. Other systems such as FBUFS focus on data
movement without specifically addressing the API issue[8].

3.2.2. Interrupt and context switching overheads. An important part of the cost of I/O is the expense
of interrupts and context switching. Often I/O bound applications enter a loop reading data from one I/O

descriptor only to immediately write it back out to another I/O descriptor. These applications are characterized
by doing little processing and making a large number of I/O system calls. Performing repeated system calls is
expensive due to the overhead of switching back and forth between kernel and user mode and the copying of
data. Efforts to address this problem in the networking field have focused on protocol processing overhead.
This effort has been successful. Currently protocol processing costs on the order of one hundred instructions
for the common case[16]. But it is important to note that the operating system overhead of context switching
and interrupt handling is on the order of thousands of instructions. So, there is still room for improvement.

3.3. No support for continuous media

Another problem with the current API is that it was not designed to support continuous media. Continuous
media has two main requirements: QOS support and efficient periodic data transfer.
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QOS support consists of QOS specification, reservation, and enforcement. QOS specification consists of
providing hooks in the API for setting QOS requirements and then translating them into a format the underlying
hardware can understand. Once the QOS has been specified, then the resources can be reserved. Then, while
data is being transfered, the network and operating system must make sure the process does not use more
resources than it is entitled to. New networks like ATM are being designed to provide QOS support for various
applications. However, there is no standard way in the API for the application to provide its QOS specification
to the operating system. Without this information the operating system cannot do resource reservation on the
local machine and request resources from the network.

Continuous media also needs efficient periodic data transfer. The current I/O subsystem requires the
application to explicitly make a system call to transfer data. This is expensive and wasteful because with
continuous media the application knows in advance the period at which data will be sent, but it does not take
advantage of this knowledge.

4. Proposed Solutions

Based on the problem statements in Section 3, our objective is to design and implement a UCM I/O subsystem
with the following features:

• a clean and uniform I/O API

• a high performance I/O subsystem with minimal data copying and system calls

• support for continuous media including QOS specification and periodic data transfer support

The UCM I/O structure is shown in Figure 4. The application uses the UCM I/O API interface to perform
I/O. To accompany this new API, a new data movement facility is needed in the kernel. This facility needs to
have a clean interface with the new API. The UCM I/O system will be an integral part of the virtual memory
system and software caches and will support as many types of devices as possible.

application

I/O interface

buffering and data transfer

device interface

device driver

Figure 4: UCM I/O layers

The four most significant ideas behind UCM I/O that will contribute to UCM I/O’s meeting of its objectives
are:

• a new I/O API that has a small number of functions, can support a variety of I/O devices (traditional
as well as continuous media), can work with different underlying buffer management systems, and can
support all the I/O semantics of application programs
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• the use of clock interrupts for polling I/O devices and user programs in order to support periodic data
transfer and to reduce the number of asynchronous interrupts and system calls

• a supercall mechanism that allows the kernel to run an I/O program on behalf of an application, thus
reducing the number of system calls and data copying operations performed

• a buffer management system that works with different I/O devices and allows efficient page remapping
and shared memory between user programs and the kernel (and the devices controlled by the kernel)

The last three ideas lead to efficient support for continuous media devices and significant performance
improvements for I/O subsystem as a whole. These ideas are briefly described in this section and then
elaborated on in subsequent sections.

4.1. New I/O API

The UCM I/O applications program interface consists of a small number of functions that take general data
structures as arguments. For example, the function that sends data from the application to the kernel takes
buffer descriptors, and addresses as part of its arguments. Simpler backward compatible functions can be
implemented as library functions rather than systems calls to keep the kernel interface focused.

UCM I/O provides flexibility to applications and devices. This is done by absorbing some complexity in
the buffer management of UCM I/O. When outside layers send data into UCM I/O they have three options:

1. The application can force the UCM I/O layer in the kernel to copy data between application and kernel
memory. In this case the application can provide any buffer it wants. The buffer is flagged “must copy”
to the API interface. The kernel then allocates a kernel buffer and copies the data into it. After this is
done the application retains control of the buffer. This is how the current API works.

2. The application can allow the kernel to remap the data (in effect the application is giving away its
buffer). The application must specify a page (or pages) as a buffer. The kernel then uses the virtual
memory system to remove the buffer from the application’s address space and the application no longer
has access to the buffer. In this case the data flows into and out of the application’s address space. (It
is also possible to mark it “copy-on-write”). The UCM I/O API also provides the application the option
of having the kernel allocate a new buffer to replace the one that was sent.

3. The application can allow the kernel to choose whether the data buffers should be remapped or copied.
The kernel can base its decision on buffer length, memory availability, and the alignment of the buffer.
Because this decision is machine dependent it is important that it be made by the kernel, rather than the
application. The application must be able to handle both remaps and copies (the first two cases).

When data is in the UCM I/O system, the I/O system owns the data buffers. This allows it to let the outside
layers either copy or remap the buffers depending on the size of the data (UCM I/O can provide a hint as
to which is more efficient). Note that to use the new features of UCM I/O the application’s semantics may
change.

UCM I/O also supports continuous media by providing for QOS specifications in the API. These specifi-
cations are given at I/O descriptor creation time. This allows for multimedia applications and for application
oriented flow and error control in protocols. To meet the requirements, resources must be allocated on the
network and on the host, and enforced on the OS using a real-time OS scheduling mechanism. There also
needs to be an interface for changing the attributes of a descriptor. This can be combined with normal file
system attributes. It should be noted that QOS enforcement is beyond the scope of this research.



Universal Continuous Media I/O: Design and Implementation 8

4.2. SuperCall

One problem that many applications have is that they have to do system calls repeatedly to get something
done. Consider a file transfer program. The core of the program simply reads a block of data from one I/O

descriptor and writes it out to another I/O descriptor. Each read or write of data costs one system call, and
two data copies. This is very expensive given that the application does not even need to look at the data.
One solution to this problem is to use a SuperCall. A SuperCall is a way of passing a small routine that is
interpreted in the kernel. Figure 5 shows an example file transfer SuperCall routine. The kernel can execute a
SuperCall in one system call and avoid mapping the data into the user’s address space by using the UCM I/O

API described in Section 5.

1: READ from file
2. if RET_VAL == 0 return 0

4. WRITE data to socket
3. if  RET_VAL < 0 return -1

5. goto 1

Figure 5: A SuperCall routine

There are several issues involved in the implementation of SuperCalls. First, an instruction set must be
determined for the interpreter. The design of this instruction set must take into account how buffers will be
exchanged and protected between the application and the kernel. Since the instructions will be interpreted
at run time in the kernel, it is important that the kernel does not access an invalid area of memory due to an
application error.

4.3. Clock Interrupt for Polling

UCM I/O adds support for continuous media to the operating system. In traditional I/O, the only way to
trigger a data transfer is with a system call. This is not efficient for continuous media because it does not take
advantage of the periodic nature of the data stream. UCM I/O provides a way to take advantage of the periodic
nature of continuous media to transfer data. It use a circular pool of data buffers as shown in Figure 6. The
buffer pool can be used to transfer data between the application and kernel without the need of a system call.
It is accessed by both the application process and the kernel at the same time. The application arranges for
the kernel to check the circular buffer on a periodic basis. The application can ask the kernel to operate in
one of two modes. In one mode of access, the kernel polls a tag in the shared buffer area to see if data needs
to be sent. In the other mode, there is no tag and the kernel always sends the data at the polling interval. The
main difference in cost between the two modes is that the first mode requires one access to the tag area per
polling interval, and the second mode does not. However, in the second mode, if the application does not
meet polling interval the kernel may send an invalid data buffer.

Periodic interrupts from the clock chip facilitate polling by the kernel. These interrupts are used for
keeping the time of day, process scheduling, and timeouts for periodic events. One of the new periodic events
can be to poll these shared buffer pools to see if data needs to be sent. By folding the polling of the tag into
an already existing interrupt, cost is minimized.

4.4. Shared Memory and Efficient Page Remapping

UCM I/O improves the I/O performance of the operating system by reducing overhead. One way to reduce
overhead is with the new buffer management system that allows data buffers to be aligned on page boundaries.



Universal Continuous Media I/O: Design and Implementation 9

tagdata

data tag

data tag
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Figure 6: A pool of buffers

By aligning data buffers this way, the virtual memory hardware of the computer can be used to move data
without copying it. In effect, the application and the kernel are sharing the data buffer rather than having their
own separate copies of it. However, this arrangement does not make efficient use of memory due to page
alignment constraints and it requires the virtual memory system to support fast and efficient remapping of
pages.

Normally, an application’s buffer resides in virtual memory that can be paged out to disk. If a buffer is
going to be used for I/O frequently, it should be “wired down” to prevent page faults and mapping changes.
To help with this, UCM I/O allows a process to allocate a pool of buffers that can be wired down so that
there is always a buffer available for data. In this case, the pool of memory is shared statically between the
application and the kernel (rather than remapped on a per I/O call basis). One drawback of this feature is that
the user is given more of a chance to abuse the virtual memory system by tying down lots of memory.

5. UCM I/O API

This section presents the data structures and functions that make up the UCM I/O API.

5.1. Data Structures

The main UCM I/O data structure, bufio, holds pointers to buffers in an application’s address space. The
structure consists of an array of buffer vector structures and an integer representing the number of buffer
vectors structures stored. In the example shown in Figure 7 there are three buffer vectors stored in the bufio
structure. Having more than one buffer vector allows an application to do scatter-gather I/O.

A buffer vector is a data structure that describes one single buffer. Shown in Figure 8, a buffer vector
structure has four fields. The first field holds a pointer to the buffer area. The second field holds the length
of the buffer area. The third field holds flags that indicate whether the data is copied or remapped on data
transfer operations. The final field is the replacement or new buffer field (described in Section 4.1).

Generic data structures such as the buffer vector structure are useful because they can describe almost any
part of an address space without requiring the programmer to collect the data in one place. They also allow
multiple buffers to be specified at once. On the other hand, they are not as easy to incorporate into application
programs as single buffers. Functions that use a simpler buffering data structure can be added to the C library.
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3

number of buffer vectors in structure

array of
buffer vector

structures {
buf vector 1
buf vector 2
buf vector 3

Figure 7: An example bufio structure

pointer to buffer

replacement buffer (export) or new buffer (import)
(filled in by OS, if specified)

buffer of length L

repl
flagsflags (e.g. KEEP, COW, REMAP, etc.)

length L

Figure 8: An example buffer vector structure

5.2. Functions

In this section the various API functions that are part of the UCM I/O are described. The UCM I/O API is more
powerful than the Unix API. By increasing the uniformity of system calls the total number of system calls has
been decreased in the UCM I/O API. The UCM I/O system calls are somewhat more complex in terms of the
number and structure of arguments than the traditional Unix calls. However, this complexity can be hidden
by a user level library, if needed.

5.2.1. Buffer allocation functions. Although UCM I/O can work with any buffer, optimal page-aligned
wired-down buffers are necessary to fully exploit UCM I/O’s strengths. Buffer allocation functions are pro-
vided for creating these buffers. The balloc function can be used to allocate a buffer in units of pages.
There is an option that will allow the buffer to be wired down. The bfree function can be used to free
one of these buffers when they are no longer needed. Because the balloc function can use up all physical
memory, a mechanism that limits the number of buffers a process can have will be included.

5.2.2. Export function. After studying the current API calls, the export function was created. It has
all the features included in the current I/O API, and additional features designed to meet it was also was
designed to meet the needs of future I/O applications. The format of the export function is shown in
Figure 9. The export function takes an I/O descriptor, a bufio, flags, and an optional destination address
buffer and exports the data buffers described by the bufio structure from the application to the kernel. The
export function allows three options when exporting data buffers as explained in Section 4.1.

If an export function remaps a buffer out of an application’s address space, then the application will
need to allocate a new buffer later. The export function has a feature that allows this new buffer to be
allocated as the old one is shipped out. If the correct flag is set in the buffer vector structure, the “replacement
buffer” field of the structure is set to a pointer to a new buffer of the same length as the exported buffer.
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bio = the buffer to export (a bufio)
flags = flags

return value < 0 on error

fd = the I/O descriptor

tolen = length of "to" buffer

export(fd, bio, flags, to, tolen)

to = pointer to destination address

Figure 9: Export function prototype

As can be seen from the above, the export function is highly flexible. It allows for simple I/O, or
complex scatter-gather I/O. It is also easy to build a compatibility library on top of it to implement the old
API.

5.2.3. Import Function. The import function is the opposite of the export function. The import
function reads data using two alternative methods. In the first method, the application specifies where to
read the data from. For example, it could specify a specific block of a disk file. In the second method, the
application passively waits for data such as a network packet to arrive. The format of the import function
is shown in Figure 10. The import function takes an I/O descriptor, a bufio structure, and some flags. It
may also contain an optional buffer that stores the source of the data. If the first method is used, the source
is a memory address. If the second method is used, the source is the address of the host or endpoint that sent
the data. Like the export function, the import function allows the application to specify how it wants the
buffers handled.

flags = flags
bio = the buffer to import (a bufio)
fd = the I/O descriptor

fromlen = length of "from" buffer

import(fd, bio, flags, from, fromlen)

return value < 0 on error

from = the source of the data

Figure 10: Import function prototype

5.2.4. Opening a I/O Descriptor. The current API has two main paths for opening an I/O descriptor.
One is the traditional file I/O path, and the other is the more generic socket I/O path. These two paths are
shown in Figure 11. Traditional file I/O uses the open call with a file name, flags, and the protection mode
to create the file with. Note that the open call can also be used to open a device in /dev, rather than a file.
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Socket I/O requires two or three system calls. First, the socket call creates an unconnected socket that can
be optionally bound to a local address using the bind call. The connect call is then used to connect the
socket to a remote endpoint. The connect call takes the I/O descriptor, a pointer to a buffer, and the buffer’s
length. This buffer is a sockaddr structure that contains the address of the remote endpoint. The format of
the sockaddr structure depends on what type of socket is being used. For internet sockets, the sockaddr
is a sockaddr in structure where it contains an IP address and a port number. For Unix sockets, the address
is a sockaddr unix and it contains the file name of a Unix domain socket.

traditional:

open(path, flags, mode)

path = path name of file
flags = excl, creat, append,...
mode = protection

socket:

socket(type, domain, proto)

addr = sockaddr
connect(s, addr, len)

bind() [optional]

Figure 11: Opens

The socket based open is more general than the traditional that file one because it can allow for “connec-
tions” to more than just files and devices. UCM I/O combines socket I/O with traditional i/o to create a new
open call for the UCM I/O API. The format of this call is shown in Figure 12. The new open call takes a
type, domain, and protocol, just like the socket call. These parameters are used to select what type of I/O

endpoint will be used. The addr and len fields are used to specify the sockaddr structure. In order to
support normal file I/O, a new type of sockaddr will have to be created. The sockaddr file structure
contains a file name and an optional offset.

len = length of addr
addr = sockaddr to open
attrs = attributes of connection
type/domain/protocol = same as socket call

fd = open(type, domain, protocol, attrs, addr, len)

Figure 12: New open

The attribute field (attrs) in the new open call is used to point to a structure that contains the attributes
of the I/O descriptor. This is a generalization of the flags and mode arguments in the traditional open
call. Generalizing these parameters creates a natural place to specify attributes for an I/O descriptor. For
example, for normal file I/O, the attribute structure can be a pointer to a structure that contains the flags and
protection mode of the file. For network I/O the attribute structure could be null, or for connections that
require performance guarantees the attribute pointer could point to a structure that contains them.

This simplifies state management since the application’s interface to descriptor dependent state informa-
tion can be centralized into one place in the API rather than spread out over several calls. For example there
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are several system calls to change a file’s attributes (e.g. change protection, ownership, lock file). For sockets
there is a “set socket options” call. All these interfaces to I/O attributes can be bundled into one universal API

call.

5.3. Continuous Media I/O

This section describes the support UCM I/O has for continuous media I/O. In continuous media I/O data is
being sent on a periodic basis. UCM I/O takes advantage of the periodic nature of continuous media I/O to
improve performance.

5.3.1. Continuous media data structures. In UCM I/O, continuous media I/O is built using the buffer
allocation system and import/export system call interface. Logically there is a ring of pre-allocated
buffers (a circular array) on which all I/O is performed. This ring is described by a control buffer data
structure. The format of the control buffer data structure is shown in Figure 13. For efficiency a control
buffer must be stored in a wired down area of virtual memory, so it is best to store it in a buffer allocated with
balloc. The control buffer contains a fixed length header and an array of arguments for either import or
export. Each element of the array describes one buffer in the circular array. The fixed header part of the
control buffer contains several items. It contains two pointers into the circular array. These pointers indicate
which buffer the kernel and application are working on. Because there is only one writer1 to a pointer there
is no need for a semaphore to protect the pointers. When sending data, the application’s pointer is ahead of
the kernel’s pointer. When receiving data, the application’s pointer is behind the kernel’s pointer. The length
field in the fixed head tells the kernel how many buffers are in the circular list. The “time to poll” field tells
the kernel how often it needs to check the control buffer to see if there is something ready to send. There is
also a place to put import, export, and other flags.

application pointer
cpu pointer
length
time to poll
flags for application and cpu, and read/write flag

ctrl. info

applkernel

import/export buffers

import or export args for a buffer (an array of them)

{
Figure 13: Control buffer format

5.3.2. Continuous media functions. To start UCM I/O’s continuous media I/O a control buffer must be
allocated and initialized properly. Then the application can call auto io on the control buffer to start the

1there can be any number of readers
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I/O process. To stop the I/O process the application can either exit, close the I/O descriptor, or call stop io
on the control buffer.

Once the auto io is in progress the application can send data on a periodic basis without performing
any more system calls. If an application wants to generate a continuous media stream it just has to fill one
of the buffers in the ring and update the control information. The kernel will poll the control information in
the clock interrupt to see if data needs to be sent. Since the control buffer is wired down the polling overhead
should be minimal because control buffer memory accesses will not cause page faults. UCM I/O does not
provide any quality of service guarantees in the kernel, however, these guarantees may be provided by a
scheduler[13].

5.4. Super Calls

UCM I/O also improves application performance by reducing the number of system calls by allowing them
to be aggregated into “super” system calls or SuperCalls. This is useful for applications such as data transfer
programs and daemons whose execution time is spent mostly in system calls. A SuperCall is a short program
passed into the kernel for interpretation. This program can include multiple system calls.

kernel read()

data copy to user

kernel write()

data copy to kernel

read() stub called

kernel read()

data copy to user

write() stub called

kernel write()

data copy to kernel

2 data copies per loop
2 system calls per loop

Traditional loop:

SuperCall setup and call

1 system call (total)
2 data copies per loop

Simple SuperCall:

SuperCall setup and call

kernel read()

kernel write()

1 system call  (total)
no copies in loop

SuperCall:

lo
op

lo
op

lo
op

Figure 14: SuperCall

Figure 14 shows how a SuperCall can reduce the cost of a file transfer loop. The left-hand side of the
figure shows the cost of the file transfer loop if a SuperCall is not used. The cost consists of two system calls
and two data copies per loop. The number of loops executed depends on the size of the buffers being used
and the size of the data being sent. A system call consists of a stub that is called by the user program and a
function in the kernel (usually with the same name as the stub) that is called on behalf of the user to perform
the system call. A naive implementation of a SuperCall would simply take the SuperCall program and call
the kernel routine directly, as shown in the middle of Figure 14. While this is not difficult to implement, it is
still expensive because the kernel routines will still be copying (or mapping) the data into and out of the user
space. A more efficient scheme would be for the SuperCall to only copy the data between the user and kernel
at the ends of the SuperCall, as shown in the right-hand side of the figure. While this is more efficient, it is
also much harder to implement because the kernel usually defers copying until the data is actually needed.
One of the main design challenges of the SuperCall system is that it needs to be designed in such a way that
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useless copying is eliminated. This issue must be taken into account when deciding where and when the
import and export system calls move data between user and kernel space.

The SuperCall instruction set must also be designed with ease of use in mind. Application programmers
will not use SuperCalls if they require too much effort to understand and use. One important issue that will
influence the design of the SuperCall instruction set is when to copy data between kernel and user space.
Current system calls defer this copy until they are deep within a system call. Figure 15 shows the copy depth
for two system calls. For the open call the copy in of the file name happens three levels down into the
code. For a write call the copy in happens four levels down. When a system call is being executed as part
of a SuperCall the copy may or may not need to be done. The layering of the kernel code will have to be
re-thought in order to implement SuperCalls efficiently.

open write

vn_open

namei

copyinstr

vn_write

VOP_WRITE

uiomove

copyin

Figure 15: Copy depth

Another issue that must be considered is the single-threaded nature of many operating systems. Because
a process running a system call cannot be preempted by another process, the SuperCall driver must be careful
to check to see if the process needs to be put to sleep for a while. Combining SuperCalls with UCM I/O will
hopefully lead to very efficient I/O performance.

6. Buffer Management and Virtual Memory

Buffer management is an important component of the UCM I/O system. The buffer management system:

• supports various application data transfer semantics such as the three options described in Section 5
(copy, remap, and copy/remap).

• provides efficient page remapping to avoid data copying.

• provides shared memory between applications and the kernel to reduce copying and virtual memory
management overhead.

• supports I/O endpoints that use polling, a variety of DMA schemes, caching, and in-band or out-of-band
control information.

This section contains the initial design of the UCM I/O buffer management system. Section 6.1 describes
how the buffering system will support API semantics. Sections 6.2 and 6.3 describe how the UCM I/O buffer-
ing systems interact with the file cache and control information, respectively.
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6.1. Supporting API Semantics

The UCM I/O API offers a wider range of options than the traditional API. This section describes the buffer
management options that support the new API semantics. The new import and export operations require
several system and virtual memory related operations. These operations are pictured in Figure 16. For an
export operation, the I/O descriptor and buffer description are available from the system call parameters.
These parameters must be checked by the kernel for valid data. The I/O descriptor must be converted to a file
pointer that points to a data structure which contains all the state information about the open I/O descriptor.

set up DVMA
convert VA

to page frame no.

start I/O

set up device

copy/remap code 

(protection/buf alloc)

return
or sleep until I/O is done

import/export

I/O dispatcher

Figure 16: VM operations

For connectionless I/O operations, a “route” to the destination must be determined through a filesystem
file lookup, or a network address translation. If the I/O descriptor is already connected then the output
destination information was determined at I/O descriptor connection time and is stored in the structure pointed
to by the file pointer.

Once the destination is determined the data buffers must be processed. Each buffer can be either copied
or remapped. For buffers that must be copied the kernel must allocate a kernel level buffer to copy in the
data. This involves allocating a buffer of kernel virtual memory and some physical memory to back that
kernel virtual memory. If the data is to be remapped, a destination kernel virtual address must be determined.
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Then the processes address space description must be locked and the page table entries must be adjusted. The
translation lookaside buffer (TLB) and data cache may have to be flushed. After the copy or remap operation
is done, the UCM I/O system will own the data buffers.

Once the data is in the UCM I/O system, it may need to be processed by one or more parts of the I/O

dispatcher. The internal structure of the I/O dispatcher is shown in Figure 17. When the I/O dispatcher
receives a data request it performs an operation on it and dispatches the I/O request. There are several ways
an I/O request could be dispatched. For example, for protocols, the I/O dispatcher may prepend in-band
header information on the buffer and then dispatch it to a network device driver. Or, for disk files, the I/O

dispatcher may first try and satisfy the I/O request from a cache. If the data is in the cache the I/O dispatcher
can return the data immediately. However, if the data is not in the cache, the I/O dispatcher can place an I/O

request with a device driver (possibly caching the result). By using the I/O dispatcher concept it is possible to
integrate different I/O systems together into one abstraction and still provide all the flexibility that is available
in today’s systems. Note that the full semantics of the I/O dispatcher have not been fully defined yet.

data request

result

data request

tags
cache

hit

cache miss

a

d

t

a
add protocol

header

re-xmit

buffer

data request to device driver data request to another

I/O dispatcher

I/O dispatcher routine(file cache miss)
or

device driver

Figure 17: Two example paths through the I/O Dispatcher

Once the data is filtered and is safely wired down in kernel virtual memory the I/O device must be pro-
grammed. For DMA transfers this involves setting up the buffers and initiating the transfer. For programmed
I/O there is no setup; the kernel must explicitly load the data. For I/O to another process some of the virtual
memory operations described above must be performed.

If the sending process requests new buffers, then UCM I/O allocates and maps them. If so, it must do the
allocation and map in these buffers. The process itself may have the option of going to sleep to wait for the
I/O to finish or it may continue without waiting for the I/O.
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6.1.1. Shared memory. The UCM I/O buffering system supports memory being shared between the
kernel and the application. To use shared memory, an application must allocate a ring of buffers. The
application then accesses these buffers one at a time using the remapping interface of the import/export
API. The shared memory buffers appear to the application to be remapped following the import or export
system call. However, the buffers actually remain mapped into both the application and kernel address spaces.
As a result, a remap and its associated overhead are avoided. For this system to work properly the application
must be careful not to modify buffers that it has passed to the kernel using the import or export system
calls. Fortunately, if the application is careless it does not affect the rest of the system.

6.1.2. SuperCalls. In an ideal world, a SuperCall should be able to call any system call and return the
results of the SuperCall to any memory location in the application’s address space. This is a difficult process
to implement given that copies of data between the application and the kernel are spread throughout the
kernel. So, the implementation constraints of the UCM I/O buffering system may force extra constraints on
the design of the SuperCall mechanism.

6.1.3. Performance. To have efficient I/O, the buffering system described above must be efficient. UCM

I/O’s buffering system has been designed to achieve this efficiency requirement by:

• avoiding expensive data copying where ever possible. The import/export API of UCM I/O allows
the buffering system to choose when to copy small chunks of data and when to remap large chunks of
data.

• minimizing the software cost of page remapping as much as possible. For example, to do DMA the
kernel needs to be able to convert from a virtual address to a physical address quickly. An inefficient
software implementation could perform a software-based memory management unit (MMU) tree walk.
A more efficient software implementation might be able to map the page table entries (PTEs) in such a
way that the conversion can be done with some simple address arithmetic, thus reducing the software
overhead of page faults from the order of thousands of instructions to hundreds of instructions.

• using shared memory between the application and kernel to eliminate the cost of copying and remap-
ping data between the user and kernel.

• allowing the I/O dispatcher to provide caching and to perform standard algorithms such as protocol
header prediction.

6.2. UCM I/O and the File Cache

For efficiency, parts of data files are cached in RAM. UCM I/O buffer management must interact properly
with the file cache. When data is read or written the kernel first checks to see if the pages requested are in
the cache. The data is updated after the buffering system flushes the page from the cache. This process is
shown in Figure 18. When remapping pages UCM I/O must be careful not to map out a page from the file
cache leaving the cache empty for the next request. It should also be noted that for files containing continuous
media it may not be useful to cache data block since these files are often traversed sequentially. This can be
controlled with a flag as part of the I/O descriptors attributes. (The caching code in the I/O dispatcher will
interpret this flag.)

UCM I/O buffer management is designed to use the same mechanism that the mmap system call uses
to handle the file cache. For read-only access the page can be mapped read-only by as many processes as
necessary. For write access if changes should be private, then a copy-on-write scheme should be used. If
changes should be shared by the whole system, then the same page can be mapped read/write into as many
processes as necessary.
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cached pages of files

tags (vnode, offset)

cache miss, call physical I/O

request
application

Figure 18: File cache

6.3. Out-of-band vs In-band Control Info

There are many ways that control information is passed between endpoints in an I/O operation. Devices such
as disk controllers pass control information separately from the data, where as devices such as a network
interface pass control information in the data stream. For example, ethernet interfaces pass the ethernet, IP,
and transport protocol headers in the data area. However, as long as the data is not larger than the maximum
transport unit this is not a major problem. a problem may occur if the data is so large that gets fragmented into
multiple packets. When these packets are received it is not possible to reassemble the data without having
headers embedded in the middle of the data area.

6.3.1. Protocol Processing. UCM I/O has three buffering options: copy, remap, and copy/remap. UCM

I/O’s handling of these cases in the context of protocol processing is described below.

Copying: This case can be handled in a traditional way. UCM I/O will copy packet data if the application
requests it, or if the application leaves the copy/remap decision up to UCM I/O. On output, UCM I/O

can save a copy of the data buffers for retransmission by incrementing an “in use” reference count on
the buffer pages. On input the data can be copied as needed. Headers can be stored in a separate buffer,
or copied into the main buffer. Buffers saved for retransmission are released when an acknowledgment
is received by the I/O dispatcher.

Remapping (transmit): To transmit a remapped buffer, header data must be prepended to the front of the
buffer. There are several ways to do this: the application can leave room in the front of the buffer pages
for the header, if scatter/gather I/O is available then a separate buffer can be used for the header, or if
DVMA is available, then the header can be mapped in front of the data pages in the kernel virtual address
space. Buffers can be held for retransmission with a reference count. For shared memory, these buffers
should not be touched by the application (at the risk of corrupting the connection). If applications obey
the semantics of the API this will not be a problem. Note that if the application misbehaves, it causes
problems for itself but not the rest of the system.

Remapping (receiving): When data comes in from the network the headers are usually in the front of the
buffer. When the buffers get mapped into the application’s address space the headers get mapped as
well. Because the application is not supposed to access header information the application’s pointer
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is set to point directly to the data. In this case the application could access header data if it looked in
the front part of the buffer. However, this would be a violation of the semantics of the API, and the
application should not expect valid data in that area. Another way to deal with this problem is to have
the network interface hardware separate the headers from the data as data arrives (as proposed in the
APIC interface).

Copy/remap: This case is simply a superset of the previous cases.

Note that the copying and remapping phase of data I/O is done before the data reaches the I/O dispatcher.
The I/O dispatcher has control of the data it receives from the copy and remapping layers. Also, note that for
the remapping case, the data may reside in a shared memory buffer. In that case the data may not actually be
remapped (but to the application the semantics of the I/O operation are the same as a remap).

7. Related work

This section provides pointers to work related to this research.

Historic Unix I/O and IPC API. The Unix I/O API[17] started off with just a few functions and the
concept of “everything is a file.” These functions included open, close, read, write, and ioctl. For
interprocess communications the pipe system call was provided.

The BSD socket IPC system was added to Unix to support networking protocols such as TCP/IP. The
socket API is very flexible and supports both connection-oriented and connectionless network I/O. It uses its
own buffering system that consists of a data structure called an mbuf which allows data to easily be added
to the ends of a buffer. All the API weaknesses presented in Section 3 apply to the BSD API. For example,
the socket interface does not use advanced buffer management techniques such as page remapping, instead it
always copies data. It also has no support for continuous media or file I/O.

New operating systems such as Plan9 from Bell Labs attempt to get back to the “everything is a file” I/O

model and the read/write API interface. However, Plan9 does not support a page remapping based I/O

API or continuous media data streams.

Uniform I/O Interfaces. One often cited work in the area of uniform I/O interfaces is the UIO interface
of the V operating system[3]. The UIO work creates a framework into which all I/O is supposed to fit. How-
ever, the UIO effort focuses on providing support for a distributed environment based on remote procedure
calls or message passing. It provides uniform interfaces for locking, data replication, and atomic transactions,
but it does not address current issues such as multimedia data streams or the reduction of data copying.

VM Systems. Older Unix VM systems emulated the VAX hardware system so that they can use VAX

memory management software. As VAX hardware became less popular the VM system became dated and
inefficient. Two VM systems that have replaced the old VAX based systems are the SunOS VM system[10]
and the Mach VM system[21].

The SunOS VM system steps away from the old VAX hardware and supports a machine-dependent/machine-
independent layer system in a more portable way. It merges file and buffer cache memory management into
one system and supports the BSD memory map (mmap) interface. SunOS style shared libraries were first built
on top of this VM system. The SunOS VM system does not directly support page remapping, and uses the
traditional I/O API.

The Mach virtual memory system is from the mach operating system. It has been imported into the
4.4BSD operating system. It is a portable VM system that requires only one machine dependent module
(the “pmap” module). We expect to modify and replace parts of this VM system as UCM I/O is implemented.
Specifically, it needs to be modified to provide efficient remapping and sharing of memory between the kernel
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and application processes. While the full details of these changes have not been worked out, it is clear that
they will be non-trivial.

FBufs. The FBUF system[8] is a data transport service which is part of the x-kernel. The x-kernel is built
into the Mach 3.0 operating system and provides support for protocol composition in a microkernel based
operating system. The FBUF system consists of only a data transport service which uses page remapping,
and doesn’t address API issues. It also does not provide system call free I/O for continuous media or a way
to perform multiple I/O operations in one system call (e.g. SuperCalls). Also, the FBUF system is not very
portable and has not yet been generalized to work with non-network based I/O.

Network Interfaces. Previous work at Washington University in network interfaces focused on shared
memory. The Axon project[22] defined an I/O model based on shared memory segments. These memory
segments are “streamed” between machines using an application-oriented lightweight transport protocol.
The idea of “segment streaming” is a precursor to the idea of continuous media streams[12].

The current trend with new host network interfaces is to make them more intelligent. For example, the
Silicon Graphics FDDI interface is a newer host network interface which takes advantage of virtual memory
techniques without changing the API. On packet sending, the buffer is marked “copy-on-write” and passed to
the network interface. On packet reception, if the buffer provided by the application is page aligned and its
length is a multiple of the page size then that buffer is replaced by page remapping with the data.

Newer ATM interfaces such as the APIC[6, 7] have been designed with advanced features such as on-board
segmentation and re-assembly, and automatic separation of headers from data on packet delivery. This allows
the OS to use the VM system to deliver data to the application.

Packet Filter. The BSD packet filter (BPF)[20] is a tool which allows for user-level network packet
capturing. It allows the application to load a “filter” into the kernel, which is used to discard uninteresting
packets without having to copy them into the application’s address space. The “filter” is, in fact, a small
interpreted program. In the first version of the packet filter the program was “executed” on a stack-machine.
The current version of the BPF the program is “executed” on a virtual RISC machine. The RISC machine
has access to the packet, some registers, and a small area of scratch memory. This is similar in spirit to the
SuperCall. However, while the BPF is narrowly focused on one question which has a simple yes or no answer
(should the packet be passed to the application?), the SuperCall is aimed at allowing more general forms of
I/O from the kernel.

8. Current Status and Future Research

The topic of this paper is the design and implementation of the UCM I/O system. This research can be divided
into four stages.

• First, the problem to be solved must be fully identified and clear objectives for the problem’s solution
must be set. This has been accomplished.

• Second, a design for the solution must be developed that meets all the proposed objectives. The pro-
posed solution, UCM I/O, consists of two main parts: the API and the buffering system. At this time,
the UCM I/O API has been almost fully defined and appears to support all the I/O operations presented
in this proposal. Based on the requirements of the API, a high level design of the UCM I/O buffering
system has been developed.

The final step in finishing the design is to adjust it as needed to fit in with NetBSD specific details.
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• The third stage of the proposed research is the implementation phase. The first step of this phase is to
support the traditional Unix API on top of the new buffering system. Once the new buffering system
is working with the old API, the implementation of the new API can begin (the old API will still be
supported). After the new API is implemented, the final step is to implement the SuperCall system call
driver.

• Finally, once the implementation is complete, it needs to be evaluated. For novel ideas such as shared
buffer ring based I/O and the SuperCall, simply showing that they work is a first step to proof of
concept. After that, the next thing to do is to start inserting probes in the kernel to measure the overhead
of UCM I/O. For the API, the cost of remapping vs copying needs to be measured (in terms of delay
and throughput). Also the impact of the new API on existing applications needs to be evaluated. For
SuperCalls, the benefits of moving part of an application into the kernel needs to be measured. Existing
applications such as ftp and cp can be ported and their performance should be compared to the
original versions. For continuous media, a raw video or audio application which sends data periodically
can be written. This application can be evaluated by using probes to measure the polling cost, and by
monitoring the network. For the buffer management and VM system the remapping time and page fault
time need to measured.

Additionally, we will investigate any unusual results that the above timings uncover. Finally, after imple-
menting and measuring UCM I/O we will try to evaluate where the I/O costs lie and if there are any changes
that could be made to the hardware or software that would further improve the performance of UCM I/O.
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