DESIGN OF UNIVERSAL CONTINUOUS
MEDIA I/0*

Charles D. Cranor and Gurudatta M. Parulkar

Washington University, St. Louis MO 63130, USA

Abstract. The problem this research addresses is how to modify an
existing operating system’s 1/0 subsystem to support new high-speed
networks and high-bandwidth multimedia applications that will play an
important role in future computing environments.?

1 Introduction

The current Unix 1/0 application program interface (API) is a cross between
file 1/0 and socket 1Pc 1/0. While this APT is flexible and compatible with older
versions of Unix, it has a number of weaknesses that need to be addressed for fu-
ture applications. These weaknesses include the Ap1’s unwieldiness, performance
problems in the 1/0 subsystem (due to data copying and system call overhead),
and little support for continuous media.

Thus, our objective is to design and implement a universal continuous media
1/0 (ucM 1/0) subsystem with the following features:

— a clean and uniform 1/0 API

— a high performance 1/0 subsystem with minimal data copying and system
calls

— support for continuous media including Qos specification and periodic data
transfer support

The four most significant ideas behind ucm 1/0 that will contribute to ucm
1/0’s meeting of its objectives are:

— a new 1/0 API that has a small number of functions, can support a variety
of 1/0 devices (traditional as well as continuous media), can work with dif-
ferent underlying buffer management systems, and can support all the 1/0
semantics of application programs

— the use of clock interrupts for polling1/0 devices and user programs in order
to support periodic data transfer and to reduce the number of asynchronous
interrupts and system calls

* This work was supported in part by ARPA, the National Science Foundation, and
an industrial consortium of ascom Timeplex, Bellcore, BNR, Goldstar, NEC, NTT,
Southwestern Bell, SynOptics, and Tektronix

2 This paper is an extended abstract of [1].

— a supercall mechanism that allows the kernel to run an 1/0 program on behalf
of an application, thus reducing the number of system calls and data copying
operations performed

— a buffer management system that works with different 1/0 devices and allows
efficient page remapping and shared memory between user programs and the
kernel (and the devices controlled by the kernel)

The last three ideas lead to efficient support for continuous media devices
and significant performance improvements for the 1/0 subsystem as a whole.
The first three ideas are briefly described in the subsequent sections.

2 New I/O API

The ucM 1/0 applications program interface consists of a small number of func-
tions that take general data structures as arguments. The two main 1/0 system
calls are called import and export. The import function takes data from the 1/0
system and imports it to the application. The export function sends data from
the application to the 1/0 system. These calls support vector based 1/0, and
both connectionless and connection-oriented 1/0 with the same interface. Other
functions include functions which start and stop continuous media 1/0, buffer
allocation functions, and functions that open and close ucMm 1/0 descriptors.
Also, note that simpler backward compatible functions can be implemented as
library functions rather than systems calls to keep the kernel interface focused.

UcM 1/0 provides flexibility to applications and devices. This is done by
absorbing some complexity in the buffer management of ucm 1/0. When the
application or device driver sends data into ucM 1/0 subsystem there are three
options:

1. The application can force the ucM 1/0 layer in the kernel to copy data
between application and kernel memory.

2. The application can allow the kernel to remap the data (in effect the appli-
cation is giving away its buffer).

3. The application can allow the kernel to choose whether the data buffers
should be remapped or copied.

When data is in the uUcM 1/0 system, the 1/0 system owns the data buffers.
This allows it to let the outside layers either copy or remap the buffers depending
on the size of the data (ucM 1/0 can provide a hint as to which is more efficient).
Note that to use the new features of UcM 1/0 the application’s semantics may
change.

UcM 1/0 also supports continuous media by providing for Qos specifications
in the Ap1. These specifications are given at 1/0 descriptor creation time. This
allows for multimedia applications and for application oriented flow and error
control in protocols. To meet the requirements, resources must be allocated on
the network and on the host, and enforced within the OS using a soft real-
time scheduling mechanism. There also needs to be an interface for changing

the attributes of a descriptor. This can be combined with normal file system
attributes. It should be noted that Qos enforcement 1s beyond the scope of this
effort but is being explored in a related project [2].

3 SuperCall

UcM 1/0 also improves application performance by reducing the number of
system calls by allowing them to be aggregated into “super” system calls or
SuperCalls. This is useful for applications such as data transfer programs and
daemons whose execution time is spent mostly in system calls. A SuperCall is
a short program passed into the kernel for interpretation. This program can
include multiple system calls.

Traditional loop: Simple SuperCall: SuperCall:
read() stub called SuperCall setup and call SuperCall setup and call
kernel read() kernel read() kemel read()
g data copy to user 8§ datacopytouser £ femel write()
write() stub called kernel write()

1 system call (total)
kernel write() data copy to kemel no copies in loop
data copy to kernel
1 system call (total)
2 data copies per loop
2 system calls per loop
2 data copies per loop

Fig. 1. SuperCall

Figure 1 shows how a SuperCall can reduce the cost of a file transfer loop. The
left-hand side of the figure shows the cost of the file transfer loop if a SuperCall
is not used. The cost consists of two system calls and two data copies per loop.
The number of loops executed depends on the size of the buffers being used and
the size of the data being sent. A system call consists of a stub that is called by
the user program and a function in the kernel (usually with the same name as
the stub) that is called on behalf of the user to perform the system call. A naive
implementation of a SuperCall would simply take the SuperCall program and
call the kernel routine directly, as shown in the middle of Figure 1. While this
is not difficult to implement, it is still expensive because the kernel routines will
still be copying (or mapping) the data into and out of the user space. A more
efficient scheme would be for the SuperCall to only copy the data between the
user and kernel at the ends of the SuperCall, as shown in the right-hand side
of the figure. While this is more efficient, it is also much harder to implement
because the kernel usually defers copying until the data is actually needed.

4 Clock Interrupt for Polling

UcMm 1/0 adds support for continuous media to the operating system. In tradi-
tional 1/0, the only way to trigger a data transfer is with a system call. This
is not efficient for continuous media because it does not take advantage of the
periodic nature of the data stream. UcM 1/0 provides a way to take advantage
of the periodic nature of continuous media to transfer data. It uses a circular
pool of data buffers, as shown in Figure 2. The buffer pool can be used to trans-

application space

data tag

data tag data tag

data tag data tag

kernel space

Fig. 2. A pool of buffers

fer data between the application and kernel without the need of a system call.
It is accessed by both the application process and the kernel at the same time.
The application arranges for the kernel to check the circular buffer on a periodic
basis. The application can ask the kernel to operate in one of two modes. In
one mode of access, the kernel polls a tag in the shared buffer area to see if
data needs to be sent. In the other mode, there is no tag and the kernel always
sends the data at the polling interval. The main difference in cost between the
two modes is that the first mode requires one access to the tag area per polling
interval, and the second mode does not. However, in the second mode, if the
application does not meet the polling interval the kernel may send an invalid
data buffer. By folding the polling of the tag into an already existing interrupt,
cost i1s minimized.

References

1. Cranor, C., Parulkar, G., “Universal Continuous Media I/O: Design and Implemen-
tation,” Washington University Department of Computer Science, Technical Report
WUCS-94-34, 1994.

2. Gopalakrishnan, R., and Parulkar, G.M., “Application level Protocol Implementa-
tions to provide Quality-of-service Guarantees at Endsystems,” Ninth [EEE Work-
shop on Computer Communications, Duck Key, Florida, Oct 1994.

