
Design and Implementation of a
Distributed Content Management System

C. D. Cranor, R. Ethington, A. Sehgal†, D. Shur, C. Sreenan‡ and J.E. van der Merwe

AT&T Labs - Research †University of Kentucky ‡ University College Cork
Florham Park, NJ, USA Lexington, KY, USA Cork, Ireland

ABSTRACT
The convergence of advances in storage, encoding, and networking
technologies has brought us to an environment where huge amounts
of continuous media content is routinely stored and exchanged be-
tween network enabled devices. Keeping track of (or managing)
such content remains challenging due to the sheer volume of data.
Storing “live” continuous media (such as TV or radio content) adds
to the complexity in that this content has no well defined start or
end and is therefore cumbersome to deal with. Networked storage
allows content that is logically viewed as part of the same collection
to in fact be distributed across a network, making the task of con-
tent management all but impossible to deal with without a content
management system. In this paper we present the design and im-
plementation of the Spectrum content management system, which
deals with rich media content effectively in this environment.

Spectrum has a modular architecture that allows its application
to both stand-alone and various networked scenarios. A unique as-
pect of Spectrum is that it requires one (or more) retention policies
to apply to every piece of content that is stored in the system. This
means that there are no eviction policies. Content that no longer
has a retention policy applied to it is simply removed from the sys-
tem. Different retention policies can easily be applied to the same
content thus naturally facilitating sharing without duplication. This
approach also allows Spectrum to easily apply time based policies
which are basic building blocks required to deal with the storage of
live continuous media, to content. We not only describe the details
of the Spectrum architecture but also give typical use cases.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer-communi-
cation Networks—distributed systems; H.3.4 [Information Sys-
tems]: Information Storage and Retrieval—systems and software

General Terms
Design, Management

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’03, June 1–3, 2003, Monterey, California, USA.
Copyright 2003 ACM 1-58113-694-3/03/0006 ...$5.00.

Keywords
distributed content management, continuous media storage

1. INTRODUCTION
Manipulating and managing content is and has always been one

of the primary functions of a computer. Initial computing applica-
tions include text formatters and program compilers. Content was
initially managed by explicit user interaction through the use of
files and filesystems. As technology has advanced, both the types
of content and the way people wish to use it have greatly changed.
New content types such as continuous multimedia streams have be-
come commonplace due to the convergence of advances in storage,
encoding, and networking technologies. For example, by combin-
ing improvements in storage and encoding, it is now possible to
store many hours of TV-quality encoded video on a single disk
drive. This has led to the introduction of stand alone digital video
recording or personal video recording (PVR) systems such as Ti-
VO [8] and ReplayTV [7]. Another example is the combination of
encoding and broadband networking technology. This combination
has allowed users to access and share multimedia content in both
local and remote area networks with the network itself acting as a
huge data repository.

The proliferation of high quality content enabled by these ad-
vances in storage, encoding, and networking technology creates the
need for new ways to manipulate and manage the data. The focus
of our work is on the storage of media rich content and in particu-
lar the storage of continuous media content in either pre-packaged
or “live” forms. The need for content management in this area is
apparent when one consider the following:

• Increases in the capacity and decreases in the cost of storage
means that even modest desktop systems today have the abil-
ity to store massive amounts of content. Managing such con-
tent manually (or more correctly manual “non-management”
of such content) lead to great inefficiencies where “unwanted”
and forgotten content waste storage and where “wanted” con-
tent cannot be found.

• While true for all types of content the storage of continu-
ous media content is especially problematic. First continu-
ous media content is still very demanding in terms of storage
resources which means that a policy-less approach to stor-
ing it will not work for all but the smallest systems. Sec-
ond, the storing of “live” content such as TV or radio is in-
herently problematic as these signals are continuous streams
with no endpoints. This means that before one can even think
about managing such content there is a need to abstract it into
something that could be manipulated and managed.

4

• When dealing with stored continuous media there is a need
to manage such content at both a fine-grained as well as an
aggregate level. For example, an individual PVR user want-
ing to keep only the highlights of a particular sporting event
should not be required to have to store the content pertaining
to the complete event. At the same time the user might want
to think of content in the aggregate, e.g. remove all of the
content that I have not watched for the last month except that
content which was explicitly marked for archival.

• As indicated above, trying to keep track of content on a stand-
alone system without a content management system is very
difficult. However, when the actual storage devices are dis-
tributed across a network the task of keeping track of content
is almost impossible. This scenario is increasingly common
in network based content distribution systems and is likely to
also become important in home-networking scenarios.

It would seem clear then that a content management system that
can efficiently handle media rich content while also exploiting the
networked capability of storage devices is needed. This system
should allow efficient storage of and access to content across het-
erogeneous network storage devices according to user preferences.
The content management system should translate user preferences
into appropriate low-level storage policies and should allow those
preferences to be expressed at a fine level of granularity (while not
requiring it in general). The content management system should al-
low the user to manipulate and reason about (i.e. change the storage
policy associated with) the storage of (parts of) continuous media
content.

Addressing this distributed content management problem is dif-
ficult due to the number of requirements placed on the system. For
example:

• The content management system must operate on a large
number of heterogeneous systems. In some cases the system
may be managing content stored on a local filesystem, while
in others the content may be stored on a separate network
storage appliance. The content manager may be responsible
for implementing the policies it uses to reference content or
that role may be delegated to a separate computer. A applica-
tion program interface (API) and associated network proto-
cols are needed in order for the content management system
to provide a uniform interface.

• The content management system should be flexible and be
able to handle differing requirements for content manage-
ment policies. These policies reflect what content should be
obtained, when it should be fetched, how long it should be re-
tained, and under what circumstances it should be discarded.
This means that the content management system should al-
low multiple applications to reference content with a rich set
of policies and that it should all work together seamlessly.

• The content management system needs to be able to moni-
tor references for content and use that information to place
content in the right location in the network for efficient ap-
plication access.

• The content management system must handle the interaction
between implicit and explicit population of content at the net-
work edge.

• The content system must be able to efficiently manage large
sets of content, including continuous streams. It needs to be
able to package this content in such a way that it is convenient
for users to access.

To address these issues we have designed and implemented the
Spectrum content management system architecture. Our layered ar-
chitecture is flexible — its API allows the layers to reside either on
a single computer or on multiple networked heterogeneous com-
puters. It allows multiple applications to reference content using
differing policies. Note that the Spectrum architecture assumes the
existence of a content distribution network (CDN) that can facili-
tate the efficient distribution of content (for example, the PRISM
CDN architecture [2]).

The rest of this paper is organized as follows. Section 2 describes
the architecture of our content management system. In Section 3
we describe both our implementation of the Spectrum architecture
and examples of its use. Related work is described in Section 4,
and Section 5 contains our conclusion and suggestions for future
work.

2. THE SPECTRUM DISTRIBUTED CON-
TENT MANAGEMENT SYSTEM ARCHI-
TECTURE

The Spectrum architecture consists of three distinct management
layers that may or may not be distributed across multiple machines,
as shown in Figure 1. The three layers are:

content manager: contains application specific information that
is used to manage all of an application’s content according to
user preferences. For example, in a personal video recorder
(PVR) application the content manager receives requests for
content from a user interface and interacts with the lower lay-
ers of the Spectrum architecture to store and manage content
on the device.

policy manager: implements and enforces various storage polices
that the content manager uses to refer to content. The policy
manager exports an interface to the content manager that al-
lows the content manager to request that a piece content be
treated according to a specific policy. Spectrum allows for
arbitrary policies to be realized by providing a fixed set of
base-policy templates that can easily be parameterized. It is
our belief that for most implementations this will be adequate
(if not, Spectrum can easily be extended to dynamically load
new base-policy template code at run time). A key aspect
of the policy manager is that it allows different policies to
be simultaneously applied to the same content (or parts of
the same content). Furthermore content can only exist in the
system so long as it is referenced by at least one existing
policy. Policy conflicts are eliminated by having the policy
manager deal exclusively with retention policies rather than
with a mix of retention and eviction policies. This means that
content with no policy associated with it is immediately and
automatically removed from the system. This approach al-
lows us to naturally support sharing of content across differ-
ent policies which is critical to the efficient storage of large
objects.

Note that a key difference between the content manager and
the policy manager is that the content manager manages ref-
erences to multiple pieces of content, i.e. it has an “application-
view” of content. On the other hand, the policy manager
is only concerned with the policy used to manage “stand-
alone” pieces of content. For example, in a PVR applica-
tion, the content manager layer would know about the differ-
ent groups of managed content such as “keep-indefinitely,”
“keep for one day,” and “keep if available diskspace.” How-
ever, at the policy manager level, each piece of content has

5

Content Manager

Policy Manager

Storage Manager

Content Manager
 Content Manager
 Content Manager

Policy Manager
 Policy Manager

Policy Manager

Storage Manager

Storage Manager

Storage Manager

Remote Invocation

Figure 1: The components of the Spectrum architecture and the four ways they can be configured

its own policy (or policies) applied to it and is independent
from other content.

storage manager: stores content in an efficient manner while fa-
cilitating the objectives of the higher layers. Specifically the
storage manager stores content in sub-object “chunks.” This
approach has advantages for the efficient retrieval of content
but more importantly allows policies to be applied at a sub-
object level which is critically important when dealing with
very large objects such as parts of continuous media, e.g. se-
lected pieces of TV content being stored on a PVR. Note that
the storage manager has no knowledge of the policies being
used by the content and policy managers.

Another unique part of our approach is that the interfaces be-
tween the layers can either be local or distributed. Figure 1 shows
the four possible cases. The case on the far left of the Figure shows
the simplest (non-distributed) case where all the layers are imple-
mented on a single box. This configuration would be used in self-
contained applications such as PVRs.

The next case over corresponds to the case where there is a cen-
tralized content manager that controls distributed storage devices
each of which is responsible for implementing policy based stor-
age. In this case although the remote devices are controlled by the
central manager they operate much more independently. For exam-
ple, once they receive “instructions” from the central manager they
typically operate in autonomous fashion. An example of this type
of configuration is a content distribution network (CDN) that dis-
tributes and stores content based on a schedule determined by some
centralized controller. For example, the CDN could pre-populate
edge devices with content that is expected to be very popular or
distribute large files to branch offices during off-peak hours in a
bandwidth constrained enterprise environment.

Allowing a single policy manager to control several storage man-
agers leads to the next combination of functions and the most dis-
tributed case. The need for this sort of separation might occur for
scalability reasons or when different specialized storage devices or
appliances are required to be controlled by a single policy manager.

The final case shows a content manager combined with a pol-
icy manager controlling a remote storage manager. This separation
would be possible if the storage manager is somewhat autonomous
and does not require continuous fine grained control by the policy
manager.

We now examine the function of the three layers in detail.

2.1 Content Manager
The content manager layer is the primary interface through which

specific applications use the Spectrum architecture. As such the
content manager layer provides an API for the application to ma-
nipulate all aspects of the Spectrum architecture at different levels
of granularity. The content manager API has functions that handle:

Physical devices: This set of functions allows physical storage de-
vices to be added to Spectrum thereby putting them under
control of the content manager and making the storage avail-
able to the system. Physical devices can be local or remote
— this is the only place in the architecture where the ap-
plication is required to be aware of this distinction. Once a
device is mapped into the application through this interface,
the system tracks its type and location. Users simply refer to
the content through an application-provided label.

Stores: Stores are subsets of physical storage devices. Through
these functions an application can create a store on a physical
device and assign resources (e.g. disk space) to it. Stores can
only be created in physical devices that are mapped into the
system.

Policy Groups: Policy groups are the means whereby an applica-
tion specifies, instantiates, and modifies the policies that are
applied to Spectrum content. Typical usage of this set of
functions is to select one of a small set of base policies and
to parameterize this specific instance of the policy. Policy
groups are created within existing stores in the system. The
Spectrum architecture has policies that are normally associ-
ated with storage that aim to optimize disk usage. In addition
a set of policies that take a sophisticated time specification
enable storage that is cognizant of time. For example, a sim-
ple time-based policy could evict content from the system
at a certain absolute or relative time. A slightly more in-
volved time-based policy enabled by the Spectrum architec-
ture could allow content to be stored in “rolling window” of
a number of hours (for example, the most recent N-number
of hours is kept in the system). Time-based polices are of
particular use when dealing with continuous content like a
live broadcast.

6

Content: At the finest level of granularity content can be added
to or removed from the system. Content is specified to the
system by means of a uniform resource locator (URL) which
concisely indicates the location of the content as well as the
protocol to be used to retrieve it. Optionally a time specifi-
cation can be associated with content. This allows content to
be fetched into the system at some future time, or at future
time intervals. Again, this is particularly useful for dealing
with the storage and management of live content.

2.2 Policy Manager
The policy manager layer of the Spectrum architecture has two

main types of API functions. First, there are functions that operate
on managed storage areas and policy-based references (prefs) to
content stored there. Second, there are sets of functions used to
implement each management policy. The first class of functions is
used by the content manager layer to access storage. Operations
include:

create, open, and close: These operations are used by the content
manager to control its access to storage. The policy man-
ager’s create operation is used to establish contact with a
store for the first time. Once this is done, the store can be
open and closed using the appropriate routines. Note that the
parameters used to create a store contain information on how
to reach it. For example, local stores have a path associated
with them, while remote stores have a remote host and re-
mote path associated with them. The information only needs
to be passed to the policy manager once at create time. For
open operations, the policy manager will use cached infor-
mation to contact the store.

lookup: The lookup operation provides a way for the content man-
ager to query the policy manager about what content is cur-
rently present for a given URL. For continuous media time
ranges of present media will be returned.

resource: The resource routines are used to query the policy man-
ager about its current resource usage. There are two resource
routines: one that applies to the store as a whole and another
that applies to a particular policy reference. The resource
API is extensible, we currently support queries on disk usage
and I/O load.

pref establish/update: The pref establish operation is used by the
content manager to reference content on the store. If the con-
tent is not present, this call will result in the content being
fetched (or being scheduled to be fetched if the content is
not currently available). Parameters of this function include
the URL to store it under, the URL to fetch data from if it
is not present, the policy to store the content under, and the
arguments used to parameterize the policy. The result of a
successful pref establish operation is a policy reference ID
string. This ID can be used with the update operation to ei-
ther change the storage policy parameters or delete the refer-
ence entirely.

The second group of policy manager functions are used to imple-
ment all the polices supported by Spectrum. We envision a small
set of base-level policy functions that can be parameterized to pro-
duce a wide range of storage polices. For example, a policy that
implements recording a repeating time window can be parameter-
ized to function daily, weekly, or monthly. Note that the policy
manager is only concerned with executing a specific policy. The

higher-level reasons for choosing a given policy are handled by the
content and application manager.

A base policy is implemented using six functions:

establish: called when a pref is established with the required URLs
and base policy’s parameters. The establish routine refer-
ences any content already present in the store and then de-
termines the next time it needs to take action (e.g. start a
download) and schedules a callback for that time. It can also
register to receive callbacks if new content is received for a
given URL.

update: called to change the parameters of a pref, or to discard the
policy reference.

newclip: called when a chunk of new content is received for a
URL of interest. The base policy typically arranges for new-
clip to be called for a given URL when the pref is established.
When newclip is called, the base policy checks its parame-
ters to determine if it wishes to add a reference to the clip
just received.

callback: called when the pref schedules a timer-based callback.
This is a useful wakeup mechanism for prefs that need to be
idle for a long period of time (e.g. between programs).

boot/shutdown: called when the content management system is
booting or shutting down. The boot operation is typically
used to schedule initial callbacks or start I/O operations. The
shutdown operation is used to gracefully shutdown I/O streams
and save state.

2.3 Storage Manager
The role of Spectrum’s storage manager is to control all I/O op-

erations associated with a given store. Spectrum’s storage manager
supports storing content both on a local filesystem and on a remote
fileserver (e.g. a storage appliance). For continuous media, at the
storage manager level content is stored as a collection of time-based
chunks. Depending on the underlying filesystem, a chunk could
correspond to a single file or a data node in a storage database.

The two main storage manager operations are input and output.
The input routine is used to store content in a store under a given
name. The output routine is used to send data from the store to a
client. For streaming media both the input and output routines take
time ranges that schedule when the I/O operation should happen,
and both routines return an I/O handle that can be used to modify
or cancel the I/O request in the future.

Much like the policy manager, the storage manager also provides
API functions to create, open, and close stores. It also supports op-
erations to query the resource usages and options supported by the
store. Finally, the storage manager also has a discard routine that
may be used by the policy manager to inform the store to remove
content from the store.

3. IMPLEMENTATION AND USE CASES
In this section we describe our implementation of Spectrum and

describe how it can be used.

3.1 Implementation
We have implemented Spectrum’s three layers in C as part of a

library that can be linked with Spectrum-based applications. Each
layer keeps track of its state through a set of local data files that
persist across reboots, thus allowing Spectrum to smoothly handle
power cycles. For layers that reside on remote systems (e.g. a re-
mote store) only the meta-information needed to contact the remote

7

Content Manager

Policy Manager

Storage Manager

Storage
Fetcher

Program

Listings

Graphical User

Interface

Network Enabled DVR

Program Information

Content

DVR Application

Figure 2: Spectrum in a Network Enabled DVR

node is stored locally. Our test application uses a local policy and
storage manager to fetch content and store it in a normal Unix-
based filesystem.

To efficiently handle communications with layers running on re-
mote systems, all Spectrum’s API calls support both synchronous
and asynchronous modes through a uniform interface defined by
the reqinfo structure. Each API call takes a pointer to a re-
qinfo structure as one of its arguments. This structure is used
to hold the call state and return status. For async calls, the re-
qinfo also contains a pointer to a callback function. To use a
Spectrum API function, the caller first chooses either the sync or
async mode and allocates a reqinfo structure. For sync calls, the
reqinfo can be allocated on the stack, otherwise it is allocated
with malloc. For async calls, a callback function must be provided
when the reqinfo is allocated. Next the caller invokes the de-
sired Spectrum API function passing the reqinfo structure as an
argument. For sync calls, the result of the calls is returned immedi-
ately in the reqinfo structure. For successful async calls, a “call
in progress” value is returned. Later, when the async call completes
or a timeout occurs, the async callback function is called with the
appropriate information needed to complete processing.

The modular/layered design of the Spectrum architecture sim-
plifies the objective of distribution of functionality. Furthermore,
communication between functions is typically of a “master-slave(s)”
nature. This means that several approaches to distributed operation
are possible that would satisfy the architectural requirements. In
our implementation we have opted to realize this functionality with
a simple modular design. We provide a set of asynchronous remote
access stub routines that allow users to select the transport proto-
col to use and to select the encoding method that should be used
with the data to be transferred. Transport protocols can range sim-
ple protocols such as UDP up to more complex protocols such as
HTTP. We currently are using plain TCP for most of our transport.

Function calls across the different Spectrum APIs can be en-
coded using a variety of formats include plain text, XDR, and XML.
We are currently using the eXpat XML library [4] to encode our

calls. While we are current transferring our XML encoded mes-
sages using a simple TCP connection, in a real world setting this
can easily be replaced with an implementation based on secure
sockets layer (SSL) to improve security by adding SSL as a trans-
port protocol.

An important aspect of Spectrum is that it can manage content
based on a given policy across heterogenous platforms. As we ex-
plained previously in Section 2.2, envision a small set of base-level
policy functions that can be parameterized to produce a wide range
of storage polices. In order for this to work properly, all Spectrum-
based applications must understand the base-level policies and how
they can be parameterized. To address this issue, we treat each
base-level policy as if it was a separate program. Each base-level
policy should have a well known name and command “line” op-
tions for parameterization. In fact, in our implementation we pass
parameters to base-level policies as a string that can be parsed using
a getopt-like function. This format is easily understood and pro-
vides portability since byte order is not an issue in a string. Since
this part of Spectrum is not on the critical data path, this type of
formatting is not a performance issue.

3.2 Using the Spectrum Content Management
System

In this section we show two examples of the use of the Spectrum
Content Management System in our environment. The focus of our
previous work has been content distribution for streaming media
content [2] and network enabled digital video recording [3]. The
Spectrum system is applicable to both scenarios as follows.

Figure 2 shows the Network Enabled DVR (NED) architecture.
In this case all layers of the Spectrum architecture reside on the
same physical device in a local configuration. The DVR applica-
tion obtains program listings from some network source, deals with
user presentation through a graphical user interface (GUI), and in-
terface with the Spectrum system through the content management
layer APIs. This combination of higher level functions allows the
user to select both content to be stored and what storage policies to

8

Content Manager

Centralized Content

Management station

Content

Information
User Interface

Policy Manager

Storage Manager

Storage

Fetcher

Edge Portal

Server

Policy Manager

Storage Manager

Storage

Fetcher

Edge Portal

Server

Distributed Content

To Media Endpoints

To Media Endpoints

Figure 3: Spectrum in a Content Distribution Architecture

apply to such content. Obtaining the content (through the network
or locally) and the subsequent storage on the local system is then
handled by the policy and storage managers.

The use of Spectrum in a streaming content distribution architec-
ture (e.g. PRISM [2]) is depicted in Figure 3. In this environment
streaming media content (both live, canned-live and on-demand) is
being distributed to edge portals from where streaming endpoints
are being served. In our environment content distribution and stor-
age is done from a centralized content management station which
controls several of the edge portals. The centralized station allows
administrators to manage the distribution and storage of content
without requiring continuous communication between the content
manager and the edge devices, i.e. once “instructions” have been
given to edge devices they can operate independently until changes
are to be made.

3.3 Spectrum Operational Example
To illustrate how Spectrum handles references to content, con-

sider a Spectrum-based PVR application programmed to store one

days worth of streaming content in a rolling window. To set up the
rolling window, the application would use the content manager API
to create a policy group and policy reference to the desired content.
The establishment of the one-day rolling window policy reference
would cause the policy manger to ask the storage manager to start
receiving the stream. As each chunk of streaming data arrives, the
policy manager executes the policy reference’s “newclip” function.
The “newclip” function adds a reference to each arriving chunk,
and schedules a callback a day later. At that time, the policy will
drop its now day-old reference to the content and the content will
be discarded unless it is referenced by some other policy.

Now, consider the case where the user decides to save part of the
content (e.g. a specific program) in the rolling window for an extra
week. To do this, the application requests that the content manager
add an additional new policy reference to the part of the content
to preserved. Thus, the preserved content has two references to it:
one from the rolling window and one from the request to preserve
the content for an additional week. After one day the reference
from the rolling window will be discarded, but the content will be

9

ref2, etc.

base
data

url1

url2 (media files...)

(media files...)

meta
store (general info...)

url1 chunks
prefs
ranges
media

chunks, etc.url2

poly
host ref1

ref1.files
ref1.state

Figure 4: Data layout of Spectrum policy store

preserved by the second reference. After the additional week has
past, the callback function for the second reference will be called.
This function will discard the remaining reference to the content
and as there are no remaining references the content will be freed.

In order to function in scenarios like the ones described above,
Spectrum’s policy manager must manage and maintain all the ref-
erences to various chunks of media. These references are persistent
and thus must be able to survive even if the machine maintaining
them is rebooted. Our Spectrum policy manager implementation
accomplishes this using the file and directory structure shown in
Figure 4. There are three classes of data stored, and each class has
its own top level directory. The directories are:

data: this directory is used by the storage manager to store each
active URL’s chunks of media. The media files can be en-
coded in any format, for example MPEG, Windows Media,
or QuickTime. Note that this directory is used only if the
storage manager is local. If the policy manager is using an
external storage manager (e.g. a storage appliance), then the
media files are stored remotely and are only remotely refer-
enced by the policy manager.

meta: this directory contains general meta information about the
storage manager being used and the data it is storing. Gen-
eral information is stored in the store subdirectory and in-
cludes the location of the store (local or remote) and informa-
tion about the types of chunks of data the store can handle.
The meta directory also contains a subdirectory per-URL
that contains information about the chunks of data stored.

The chunks file contains a list of chunks currently stored
and their reference counts. The prefs file contains a list of
active policy references that point to this URL. The ranges
file contains a list of time ranges of data currently stored. Fi-
nally, the media file describes the format of the media being
stored under the current URL.

poly: this directory contains a set of host subdirectories. Each
host subdirectory contains the set of policy references cre-
ated by that host. Information on each policy reference is
broken up into three files. For example, a policy reference
named ref1 would be stored in ref1, ref1.files, and
ref1.state. The ref1 file contains information about
the policy reference that does not change frequently. This in-
formation includes the base-policy and the parameters used
to create the reference. The ref1.files file contains the
list of references to chunks that pref ref1 owns. Finally,
the ref1.state file contains optional policy-specific state
information that can change over time.

Together, these files and directories are used to track references in
our implementation of Spectrum. Note that other implementations
are possible. For example, a carrier-grade Spectrum manager might
store all its policy and reference information in a high-performance
database system.

10

4. RELATED WORK
Several authors have addressed the problem of the management

of content in distributed networks. Much of the work focuses on
the policy management aspect. For example in [5], the problem
of serving multimedia content via distributed servers is consid-
ered. Content is distributed among server resources in proportion
to user demand using a Demand Dissemination Protocol. The per-
formance of the scheme is benchmarked via simulation. In [1]
content is distributed among sub-caches. The authors construct a
system employing various components, such as a Central Router,
Cache Knowledge base, Subcaches, and a Subcache eviction judge.
The Cache Knowledge base allows sophisticated policies to be em-
ployed. Simulation is used to compare the proposed scheme with
well-known replacement algorithms. Our work differs in that we
are considering more than the policy management aspects of the
problem. After carefully considering the required functionality to
implement content management in the networked environment, we
have partitioned the system into three simple functions, namely
Content manager, Policy manager and Storage manager. This has
allowed us to easily implement and experiment with a prototype
system.

Other related work involves so called TV recommendation sys-
tems which are used in PVRs to automatically select content for
users, e.g. [6]. In the case where Spectrum is used in a PVR config-
uration this type of system would perform a higher level function
and could clearly benefit from the functionalities of the Spectrum
architecture.

Finally, in the commercial CDN environment vendors (e.g. Cisco
and Netapp) have developed and implemented content management
products and tools. Unlike the Spectrum architecture which allows
edge devices to operate in a largely autonomous fashion, the ven-
dor solutions typically are more tightly coupled to a centralized
controller and do not have the sophisticated time-based operations
offered by Spectrum.

5. CONCLUSION AND FUTURE WORK
In this paper we presented the design and implementation of the

Spectrum content management architecture. Spectrum allows stor-
age policies to be applied to large volumes of content to facilitate
efficient storage. Specifically, the system allows different policies
to be applied to the same content without replication. Spectrum can
also apply policies that are “time-aware” which effectively deals
with the storage of continuous media content. Finally, the mod-
ular design of the Spectrum architecture allows both stand-alone
and distributed realizations so that the system can be deployed in a
variety of applications.

There are a number of open issues that will require future work.
Some of these issues include:

• We envision Spectrum being able to manage content on sys-
tems ranging from large CDNs down to smaller appliances
such as TiVO [8]. In order for these smaller systems to sup-
port Spectrum they will require networking and an external
API. When that API becomes available, we will have to work
out how it can be fit into the Spectrum architecture.

• Spectrum names content by URL, but we have intentionally
not defined the format of Spectrum URLs, how they map
back to the content’s actual name, or how the names and
URLs should be presented to the user. While we previously
touched on these issues elsewhere [2], we believe there is
more work to be done and that consensus-based standards on
naming need to be written.

• In this paper we’ve focused on content management for con-
tinuous media objects. We also believe the Spectrum archi-
tecture can be applied to any type of document including
plain files, but we have yet to work out the details necessary
to support this in our prototype environment.

• Any project that helps allow multimedia content to be eas-
ily shared over the Internet will have legal hurdles to over-
come before it can achieve widespread acceptance. Adapting
Spectrum to meet legal requirements will likely require more
technical work.

6. REFERENCES
[1] K. . Cheng and Y. Kambayashi. Multicache-based Content

Management for Web Caching. Proceedings of the First
International Conference on Web Information Systems
Engineering, Jume 2000.

[2] C. Cranor, M. Green, C. Kalmanek, D. Shur, S. Sibal,
C. Sreenan, and J. van der Merwe. PRISM Architecture:
Supporting Enhanced Streaming Services in a Content
Distribution Network. IEEE Internet Computing, July/August
2001.

[3] C. Cranor, C. Kalmanek, D. Shur, S. Sibal, C. Sreenan, and
J. van der Merwe. NED: a Network-Enabled Digital Video
Recorder. 11th IEEE Workshop on Local and Metropolitan
Area Networks, March 2001.

[4] eXpat. expat.sourceforge.net.
[5] Z. Ge, P. Ji, and P. Shenoy. A Demand Adaptive and Locality

Aware (DALA) Streaming Media Server Cluster Architecture.
NOSSDAV, May 2002.

[6] K. Kurapati and S. Gutta and D. Schaffer and J. Martino and J.
Zimmerman. A multi-agent TV recommender. Proceedings of
the UM 2001 workshop, July 2001.

[7] ReplayTV. www.sonicblue.com.
[8] TiVo. www.tivo.com.

11

