Gigascope: A Stream Database for Network Applications

Chuck Cranor, Theodore Johnson, Oliver Spataschek

AT&T Labs — Research

{chuck,johnsont,spatsch} @research.att.com

ABSTRACT

We have developed Gigascope, a stream database for network ap-
plications including traffic analysis, intrusion detection, router con-
figuration analysis, network research, network monitoring, and and
performance monitoring and debugging. Gigascope is undergoing
installation at many sites within the AT&T network, including at
OC48 routers, for detailed monitoring. In this paper we describe
our motivation for and constraints in developing Gigascope, the
Gigascope architecture and query language, and performance is-
sues. We conclude with a discussion of stream database research
problems we have found in our application.

1. INTRODUCTION

Managing a very large data communications network requires
constant network monitoring. IP networks are difficult to manage
(a side effect of their decentralized nature), protocols and services
are becoming more complex (MPLS, VPNs, multimedia, etc.), and
network attacks are common. Most network analysis is done via
ad-hoc tools on network trace dumps, often resulting in severe data
management problems. High speed (gigabit and higher) network
monitoring tools are available, but they are inflexible in the types
of reports they generate.

Our goal in designing Gigascope was to develop a network data
analysis tool which has the speed and flexibility that network ana-
lysts require, but which provides a structured querying environment
to make complex analysis tractable. We also wanted Gigascope to
be adaptible enough that it could be used as the primary data analy-
sis engine in many settings: traffic analysis, performance monitor-
ing and debugging, protocol analysis and development, router con-
figuration (e.g. BGP monitoring), network attack and intrusion de-
tection and monitoring (e.g. distributed denial of service attacks),
and various ad-hoc analyses.

To a person in the database community, the need for a structured
query environment and adaptibility is self-evident. What might not
be so clear is the need for high performance and flexibility. Net-
work analysts tend to be (justifiably) suspicious of using a DBMS
for their analysis engine. One significant problem is performance.
Even with the high degree of sampling and aggregation in Netflow

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD 2003, June 9-12, 2003, San Diego, CA.

Copyright 2003 ACM 1-58113-634-X/03/06 ...$5.00.

647

Vladislav Shkapenyuk
Dept. of Computer Science, CMU
vshkap@cs.cmu.edu

records (traffic summaries produced by routers) the AT&T IP back-
bone alone generates 500 Gbytes of data per day (about ten billion
fifty byte records). A further problem is that certain portions of
the analysis can be very complicated. Many analyses require that
a network protocol be simulated, e.g. IP defragmentation or recon-
structing TCP sessions. Network analysts have developed special
fast algorithms and software to overcome these problems, and are
loathe to risk their work on systems which in the past have proven
to be slow and inflexible.

Nevertheless, severe data management problems persist. In our
interactions with network analysts, we observed that most of their
analyses could be expressed as a sequence of SQL queries. Further-
more, data analysis is best done close to the data source to reduce
the data volume as soon as possible. Furthermore, if the analysis
could be done on-the-fly, we could offer capabilities that current
methods cannot provide. We therefore decided that Gigascope [4]
should be a lightweight stream query processing system which is
at least as fast as a hand-written system and which allows the user
to bypass the query system as needed, but which provides sophisti-
cated query and data management facilities.

Stream databases have recently become a popular research topic.
We refer the interested reader to the recent survey by Babcock et al.
[1], which space constraints do not allow us to repeat here. Much of
the recent work on stream databases use a continuous query model,
evaluated over a sliding window (e.g., the query language proposed
in [1]). Our query system is different, being a pure stream query
processing system more akin to Tribeca [6]. Unlike Tribeca the
Gigascope uses an SQL-like language (GSQL) rather than a proce-
dural language to express its queries, allowing query composition
and query optimization.

2. QUERY LANGUAGE

The Gigascope query language, GSQL, is a pure stream query
language with SQL-like syntax (being mostly a restriction of SQL).
That is, all inputs to a GSQL are streams, and the output is a data
stream. We feel that this choice (akin to that made by Tribeca and
Hancock) allows for precise query semantics, enables the compo-
sition of comples query processing, and simplifies the implementa-
tion of fast operators.

The query model used by most of the recently proposed stream
database systems is that of a continuous query over a sliding win-
dow of the data stream. While this model has some advantages
(e.g., presentation of results to the end user) and some areas of
best application (e.g. sensor networks), we felt that the continuous
query model to be inappropriate for network data analysis. One sig-
nificant problem is that the continuous query model makes query
composibility difficult. The input to a query is one or more data
streams, but the output is a (continuously changing) table. Queries

can still be composed (i.e., Q2 can use the output of Q1 as its in-
put), but the differences in the output of (1 must be often reverse
interpreted as a data stream.

A second problem is the difficulty of precisely expressing a query
— or conversely, understanding what a query means. Let us consider
example query Q3 from [1]:

(Select Count(*) From C, B
Where C.src=B.src and C.dest=B.dest and C.id=B.id)
/ (Select Count(*) from B)

This query is intended to identify fraction of traffic in the back-
bone B which can be attributed to a customer network C. However
the semantics of the result are not clear. Since the output is used for
monitoring, the intended result is not likely to be the evaluation of
the query over the entire stream, rather over some recent window.
However, the window is not specified, and there are in fact three
windows to specify (two in the first subquery, one in the second).
The snapshots taken by these three subqueries must be precisely
synchronized (but on what is not specified), else the result is erratic
and meaningless. If the respective windows are defined by a num-
ber of tuples rather than by time, the three windows will certainly
be unsynchronized.

Although example Q3 appears to be simple, an examination of
the evaluation details shows that the semantics are complex. We
note that examples Q1 and Q2 in [1] make explicit references to
timestamps, while the queries in section 5.1 make explicit or default
references to sliding window sizes.

A final reason to use a pure stream query rather than a continu-
ous query model is the simplicity of implementation. Rather than
transforming the input data stream into a windowed table, we can
operate on the data stream directly.

2.1 Ordered Attributes

One concern in a stream database language is that of blocking
operators. While some operators (such as selection and projection)
need no state other than the tuple being processed, other operators
(such as aggregation and join) potentially require their entire inputs
before a single output can be produced. One approach to bounding
the state is to use sliding windows [1]. Instead, our approach will
be to analyze the “timestamps” of the input stream(s) and the prop-
erties of the query to determine a query plan which bounds the state
required to evaluate blocking operators.

We observed that network analysis data generally contains one
or more timestamps or sequence numbers, that these timestamps
generally increase (or decrease) with the ordinal position of a tu-
ple in a stream, and that almost all queries make reference to these
timestamps. We therefore adopt an approach similar to that of a
sequence database. However, a sequence database model has a
couple of limitations which make it impractical for our applica-
tion. First, network data streams often have several timestamps
and sequence numbers, and they might not be monotonically in-
creasing with the ordinal position of the tuple in the stream. For
a simple example, Netflow records have a start and an end times-
tamp. A stream of Netflow records produced by a router will have
monotonically increasing end timestamps, and generally (but not
monotonically) increasing start timestamps. Further, most queries
on Netflow data will refer to the start timestamp rather than the end
timestamp. The notion of sequence is further perturbed by opera-
tors such as join and aggregation. Second, network analysis queries
naturally involve predicates and other references to the timestamps
and sequence numbers, but not to the ordinal position of a tuple in
its stream.

We make use of timestamps and sequence numbers by defining

648

them to be ordered attributes having ordering properties. These
properties might be inherent in the data source, or might be due to
processing by an operator. Below is a illustrative but nonexhaustive
set of ordering properties:

1. Strictly/monotonically increasing/decreasing expresses the
usual notion of a timestamp.

. Monotone nonrepeating is a generalization of monotone in-
creasing, and might occur due to a hash function (e.g. Q2 in

[1D.

3. Increasing in group G : This property states that among the
tuples defined by the field in G, the attribute is increasing.
This property can occur after aggregation. For example, the
start time of a Netflow record (an aggregation of packets) is

increasing in group {sourcelP,destIP,sourcePort,destPort,protocol}.

We might need to modify these definitions to account for almost-
sorted input. For example, Netflow records are sorted on the end
time, and all Netflow records are dumped every 30 seconds. There-
fore the start time of a record is always within 30 seconds of the
high water mark, i.e. the start attribute is banded-increasing(30
sec.).

We use the ordering attributes to turn blocking operators into
stream operators. In the current implementation of Gigascope, we
use the monotone increasing property as follows:

e Join : The join predicate must contain constraint on an or-
dered attribute from each table which can be used to define
a join window. For example, B.ts=C.ts or B.ts>C.ts-1 and
B.ts<C.ts+1.

e Group-by and aggregation : The group key must contain at
least one ordered attribute. When a tuple arrives for aggrega-
tion whose ordered attribute is larger than that in any current
group, we can deduce that all of the current groups are closed
and will receive no further updates in the future. All of the
closed groups are flushed to the output.

The Gigascope data definition language allows the user to spec-
ify special properties of the attributes in a source stream, including
the ordering properties. The query processing system will impute
ordering properties of the output of query operators. For example,
suppose that attribute ¢s is monotonically increasing and a projec-
tion operator computes the value £s/5 as one of the attributes in its
output. We can impute that £s/5 is also monotonically increasing.
We can perform similar reasoning for the group-by/aggregation op-
erator.

The ordering property imputation for the join operator is more
complex, and depends on the constraints in the join predicate and
the particular join algorithm selected. For example, if B.ts and C.ts
are monotonically increasing, B.ts is in the output, and the join
predicate contains the constraint B.ts=C.ts, then B.ts in the output
will be monotonically increasing. If the constraint is B.ts>C.ts-1
and B.ts<C.ts+1, then in the output B.zs might be monotonically
increasing or banded-increasing(2) depending on the choice of join
algorithm (monotonically increasing requires more buffer space).

2.2 The GSQL Language

GSQL is a SQL-like stream database language, being mostly
a restriction of SQL but with some stream database extensions.
Currently GSQL supports selection, join, aggregation, and stream
merge (discussed below). Join queries are currently restricted to
two-stream joins, and the join predicate must include a constraint

which defines a window on ordered attributes from both streams.
Aggregation queries should have at least one ordered attribute as a
one of the group-by keys, but this restriction is not enforced (the
user can obtain output by flushing the query).

All queries operate over streams, which come in two flavors:
Protocols' and Streams. A Protocol is a data stream generated
by interpreting a sequence of data packets which are presented to
the Gigascope run time system. These data packets can be from
any reasonable source — IP packets transported via OC48, Netflow
packets, BGP updates, etc. The Gigascope run time system inter-
prets the data packets as a collection of fields using a library of
interpretation functions. The schema of a Protocol stream maps
field names to the interpretation functions to invoke. A Stream is
the output of Gigascope query. The fields of its tuples are packed
in a standard fashion.

A Protocol defines a mechanism for interpreting a data source,
but not what serves as the data source (whereas the source of a
Stream 1is the output of a query). To completely specify a data
source, the Protocol must be bound to an Interface — a symbolic
name which the run time system can bind to a source of packets (if
no Interface is given, a default Interface is implied). An example
which reports the destination IP and port, and a timestamp from
TCP packets on ethO (the first Ethernet interface card) is:

DEFINE{ query_name tcpDest0; }
Select destIP, destPort, time From ethQ. TCP
Where IPVersion = 4 and Protocol = 6

The DEFINE section of a query allows the user to set properties
of the query. In this case, the query name is set to tcpDest0. A user
application or another GSQL query can read the output of tcpDest0
by specifying it in the From clause.

GSQL contains an extension to SQL, the merge operator, which
is a Union operator which preserves the ordering properties of an
attribute. For an example of a merge query, suppose that we have
a tcpDestl which matches tcpDest0 except that it reads from Inter-
face ethl:

DEFINE{ query_name tcpDest; }
Merge tcpDest0.time : tcpDestl1.time
From tcpDest0, tcpDestl

The merge operator allows us to combine streams from multiple
sources into a single stream. This operator is surprisingly important
— we implemented it before the join operator. We developed Gigas-
cope to monitor optical links, which are usually simplex rather than
duplex. To obtain a full view of the traffic on a logical link, we need
to monitor two interfaces and merge the resulting streams. This
query illustrates another feature of GSQL, namely the ease with
which queries can be composed into a complex processing chain.
GSQL currently supports nested subqueries through this mecha-
nism only, but supporting subqueries in the FROM clause requires
only an update of the parser.

GSQL supports the join of two streams as long as it can deter-
mine a join window from the join predicates. However, GSQL does
not currently support the join of a stream to a non-stream relation.
Instead GSQL provides support for user-written functions which
can act as special types of (foreign key) joins. These have worked
so well in practice that supporting non-stream tables in GSQL has
become a low priority.

Users can make new functions available by adding the code for
the function to the function library, and registering the function pro-
totype in the function registry. In the function registry, the function

"This word was chosen because of its connotations to the end-
users.

649

can be marked as a partial function, meaning that it might not re-
turn a value. The processing is the same as if there is no result
from a join — the tuple being processed is discarded. One or more
of the parameters of the function can be marked as pass by handle.
These parameters (which must be literals or query parameters) re-
quire expensive pre-processing before the function can use them,
for example a regular expression to be compiled. Lets consider an
example:

Select peerid, tb, count(*) FROM tcpDest
Group by time/60 as tb,
getlpmid(destIP,’ peerid.tbl’) as peerid

The attribute time is a 1-second granularity timer, so time/60 de-
fines minute-long buckets (when group with a new value of b is
produced, all of the pre-existing groups are closed, and therefore
are flushed to the output stream). The getlpmid function performs
longest prefix matching — that is, it identifies which subnet an IP
address belongs to. Longest prefix matching is a common network
analysis activity, and researchers have developed special fast algo-
rithms for it, which getlpmid implements. The second parameter
is a pass-by-handle parameter, which indicates a file containing the
prefixes of the autonomous systems (AS) of AT&T IP peers (i.e.,
obtained from a routing table). When the query is first invoked, the
parameter handle registration function reads this file and builds a
special in-memory for the function (the parameter handle ties this
table to the function invocation).

This example illustrates one of the design principles of Gigas-
cope, that it adapt to the needs of network analysts. If we could not
support the special algorithms that they have developed, Gigascope
would be rejected as slow and inflexible.

3. ARCHITECTURE

The central component of Gigascope is a stream manager which
tracks the query nodes that can be activated. Query nodes (for ex-
ample, tcpDest would be a query node) are processes. When they
are started, they register themselves with the registry of the stream
manager. When a user application or query node needs to subscribe
the output of a query, it submits the query name to the registry
and receives a query handle in return. The process then contacts
the query node to set up communication (through shared memory).
The stream manager does not track the connection further (which
has positive and negative aspects).

The GSQL processor is actually a code generator. A GSQL
query is analyzed then translated into either C code or C++ code
(the split is discussed below). While a code generation approach
results in some loss of flexibility, our experiences with Daytona [5]
have shown that it is capable of producing the fastest system.

The generated code interfaces with an API to perform tasks such
as registering itself, accessing source streams, and accepting and
producing tuples. Users can write their own query nodes to imple-
ment special operators by following this API. For example, we have
implemented a special IP defragmentation operator in this manner
and have built a query tree using it. The ability to bypass the ex-
isting query system when necessary is a critical flexibility in our
application domain.

Optimizations GSQL optimizes its queries by rearranging the
query plan, and by low-level optimizations on the generated code.
One significant optimization technique is to push the query as far
down the processing stack as possible, even into the network in-
terface card (NIC) itself. This is accomplished in part by breaking
queries into high level query nodes (HFTAs) and low level query

nodes (LFTAs)?. All HFTAs accept only Stream input and exist
as separate processes, while LFTAs accept only Protocol input and
are linked into the stream manager. One reason for this separation
is library convenience — the LFTAs must make use of source data
packet interpretation libraries which are linked into the stream man-
ager run time system. However, the split is also a performance opti-
mization. The LTAs are lightweight queries which perform prelimi-
nary filtering, projection, and aggregation. By linking them into the
RTS, these preliminary queries can be evaluated without additional
data transfers, and greatly reduce the data traffic to the HFTAs. To
an application LFTAs and HFTAs look identical, and in fact a sim-
ple query can execute entirely as an LFTA. If the GSQL processor
splits a query into an HFTA and an LFTA component, both streams
are available to the application, though the LFTA query will have a
mangled name.

Depending on the capabilities of the NIC, Gigascope can per-
form further optimizations. If the NIC has an appropriate RTS, we
execute the LFTAs inside the NIC. Other NICS allow us to spec-
ify a bpf (berkley packet filter) preliminary filter, and to specify the
number of bytes of qualifying packets (the “snap length”) to be re-
turned (that is, we can push a simple selection/projection operator
into the NIC).

An LFTA can perform aggregation, but it uses a small direct-
mapped hash table. Hash table collisions result in a tuple com-
puted from the ejected group being written to the output stream.
Because of temporal locality, aggregation even with a small hash
table is effective in early data reduction. An aggregation LFTA
will feed its results to an HFTA, which completes the aggregation.
This processing is similar to that of subaggregates and superag-
gregates used in data cube computation algorithms. This aggregate
query splitting optimization was one of our motivations to build Gi-
gascope as a pure stream database, because its basic optimizations
create networks of queries over streams.

Because LFTAs and lower level components are linked into the
RTS, and possibly into the NIC, all queries which generate LF-
TAs must be submitted in a batch. Changing the set of LFTAs re-
quires that the query system be stopped, the RTS changed, and then
restarted. However new HFTAS can be submitted at any point. To
increase the flexibility of the system queries can accept query pa-
rameters, which are similar to constants but which are specified at
query instantiation time and which can be changed on-the-fly. The
RTS can execute multiple instances of the same LFTA, each with
different parameters.

The architecture decision to link the LFTAs into the RTS intro-
duces some inflexibility into Gigascope (mitigated somewhat by
query parameters and the fact that we can change the RTS in sec-
onds). However, it produces a signicant benefit. By the lightweight
design, the query plan and code generation optimizations, and the
earliest possible reduction of data flowing in the system, Gigas-
cope executes as fast as hand-written analysis code (and often much
faster).

Unblocking Operators As discussed in Section 2.1, GSQL uses
ordering properties of attributes of a stream to make non-blocking
implementations of operators such as join, merge, and aggregation
— by defining the window on the streams over which the query
must execute. However, operators over multiple streams (merge
and join) can still block if one of the input streams is slow in pro-
viding tuples — perhaps because the slow stream is a naturally low
volume one. Consider the merge query in Section 2.2. If tcpDestO
produces 100Mbytes of data per second while tcpDestl produces

2FTA stands for “Filtering, Transformation, and Aggregation”.
This is another example of avoiding database jargon and adopting
instead network analysis language.

650

one tuple per minute, we are likely to overflow the merge buffers
(network traffic is notoriously bursty in this manner).

The problem is that the presence of a tuple allows us to advance
the window over which a query operates, but we do not get this
information in the absence of a tuple. To overcome this problem,
we use a mechanism similar to the one proposed by [7]. of injecting
ordering update tokens into the query stream. These tokens contain
lower bounds on the ordering attributes in the stream. While these
tokens are injected periodically by [7], we are experimenting with
an on-demand system (i.e., if an operator detects that it might be
blocked).

4. PERFORMANCE CONSIDERATIONS

The performance measure for a stream database system is not
how fast it can produce answers, but rather how high the data rate
can be on its input stream(s) before it starts dropping tuples? This
point is well expressed in [2].

To test several performance alternatives we wrote a collection of
queries to compute the fraction of port 80 traffic which is due to the
HTTP protocol (port 80 is used to tunnel through firewalls). This is
done by comparing a count of all packets on port 80 with a count of
packets on port 80 whose data payload matches the regular expres-
sion * '~ ["\\n]*HTTP/1.*’’. That is, expensive processing
is required for the evaluation of this query. Regular expression find-
ing is too expensive for an LFTA, so the filter query was split into
an LFTA which filters TCP packets on port 80, and an HFTA part
which perform the regular expression matching.

We ran our experiment using a 733 Mhz processor, 2GB of mem-
ory, and a Tigon gigabit ethernet card. We generated 60 Mbit/sec
of port 80 traffic, and additional background traffic to vary the data
rates. We tried four approaches 1) dumping the data to disk for
post-facto analysis, 2) reading data from the ethernet card using
libpcap, then discarding the packet (best case processing), 3) Run-
ning Gigascope with the LFTAs executing in the host (i.e., reading
from libpcap), and 4) running Gigascope with the LFTAs executing
on the Tigon gigabit ethernet card. We chose a 2% packet drop rate
as the maximum acceptable loss.

Option 4) (LFTAs on the NIC) had the best performance, with
less than a 2% loss rate even with a 610 Mbit/sec traffic rate (the
most that our router could handle). Options 2) and 3) had simi-
lar performance, managing 480 Mbit/sec before exceeding a 2%
packet loss. At this point the system experienced interrupt livelock.
Option 1), dumping the data to disk, had by far the worst perfor-
mance with a packet loss rate exceeding 2% at only 180 Mbit/sec
(dumping data to fast striped disks).

While space constraints prevent us from a detailed discussion of
the experiment, several points are clear:

e Early data reduction is critical for performance, and the ear-
lier the better.

e Touching disk kills performance — not because it is slow but
because generates long and unpredictable delays throughout
the system.

e Contrary to what has been written, an efficient stream database
can execute complex queries over very high speed data streams.
For example, in [1] the example query Q3 (repeated here in
Section 2) is cited as a type of query which requires sam-
pling and approximation. However the query in our exper-
iment requires far more intensive processing, and even the
libpcap trial only fails when interrupt livelock occurs. A suf-
ficiently complex query workload will require sampling and
approximation, but it is a technique of last resort.

In [2], the authors note that not all tuples are equally valuable and
that some can be more readily dropped than others. The authors
propose a scoring and scheduling mechanism to ensure quality of
service. We concur with their position that some tuples are more
valuable, but we use a simple heuristic which is easy to understand
and implement: highly processed tuples (produced further in the
query chain) are more valuable than less-processed tuples, because
of the filters and aggregations that have been applied.

S. CONCLUSIONS

We have developed Gigascope [4], a high performance stream
database for network applications. Currently we have seven instal-
lations, most of which proide special network monitoring services
for AT&T customers. Our largest scale deployment monitors ap-
plication protocol performance over two Gigabit Ethernet links for
one of our customers. At peak periods, Gigascope processes 1.2
million packets per second using an inexpensive dual 2.4 Ghz CPU
server. At the time of writing, this application has been running for
three months nonstop. Additional deployments throughout AT&T,
including OC48 deployments, are in negotiations.

By working closely with network analysts, we developed a sys-
tem which is fast and flexible enough to satisfy their expectations.
While SQL is not a familiar language to the analysts, they quickly
appreciate the ease with which new monitoring tasks can be imple-
mented. We have found that they soon start writing queries which
make aggressive use of language features (the examples in 2.2 are
simplified from an user’s application) and start demanding more.

Research Directions In the course of developing Gigascope, we
have encountered several issues which we have deferred for future
work. One issue is that our stream operators provide another di-
mension in optimization because the choice of operator implemen-
tation affects the attribute ordering properties of its output, which
in turn affects the performance of downstream operators. Another
issue is the proper use of sampling and approximation. Many query
sets do not need these techniques, but when they are applied it must
be integrated into the query language under the control of the ana-
lyst.

While GSQL suffices for a large class of tasks, many network
analysis queries find and aggregate subsequences of the data stream
(i.e., extract the TCP/IP sessions). We are exploring how to inte-
grate the complex group definition mechanisms described in [3]
into GSQL.

The most pressing issue, however, is expressing which streams
are the source of the query. Our Interface.Protocol mechanism
works for our current installations, but will not scale for the planned
dozens to hundreds of deployments. Surprisingly, this issue has not
received attention in the research literature.

6. REFERENCES

[1] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom.
Models and issues in data stream systems. In Principles of
Database Systems, pages 1-16, 2002.

D. Carney and et al. Monitoring streams - a new class of data
management applications. In Proc. Intl. Conf. Ver Large
Databases, 2002.

D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The
MD-join: An operator for complex olap. In Proc. Inthl. Conf.
on Data Engineering, pages 524-533, 2001.

C. Cranor, T. Johnson, V. Shkapenyuk, and O. Spatschek.
Gigascope: High performance network monitoring with a
SQL interface. Sigmod 2002 demonstration, 2002.

(2]

(3]

(4]

651

[5] R. Greer. Daytona and the fourth-generation language cymbal.
In Proc. SIGMOD Conf., pages 525-526, 1999.

[6] M. Sullivan and A. Heybey. Tribeca: A system for managing
large databases of network traffic. In Proc. USENIX Annual
Technical Conf., 1998.

[7] P. Tucker and D. Maier. Exploiting punctuation semantics for
querying continuous data streams. In intl. Conf. Data
Engineering, 2002.

	page1: 647
	page2: 648
	page3: 649
	page4: 650
	page5: 651

