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Talk Outline

Packet telephony

❑ Background and previous work

Telephone appliance

❑ Design issues and principles

Hardware architecture

❑ Networked processor

❑ Telephone design

Software architecture

❑ Communications mechanisms

❑ Telephone application components

Conclusion

❑ Status, future work, related work
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Packet Telephony Background

Using packet networks for voice communication

❑ Driven by potential for cost savings and new services

❑ Today mainly based on PSTN dial-in to gateway

❑ Gateways interconnected over IP networks

Need to examine consumer endpoint appliances

❑ Use of a office LANs for voice and data

❑ Penetration of home access and in-home networks

Intelligence at both the end-points and in the network

❑ Opportunity to re-partition functionality

❑ Application specific signaling supports telephony fea-
tures (conferencing, teleporting, etc.)

❑ Flexibility to support new services and capabilities (e.g.
multiple media)

❑ Implications for endpoint design
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Why Not a PC based Packet Phone?

Too Expensive ($500 too much for a phone)

Too Complex

❑ To use

❑ To install and configure

❑ To administer

Too Unsightly

❑ Big (keyboard + mouse + monitor + case)

❑ Loud (power supply fan, CPU fan, and disk)

Too Unreliable

❑ Never on when you need it

❑ Crashes often
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Design Principles

Low cost (less than $100)

❑ A consumer device (a phone to put in your bedroom)

Extensibility

❑ Packet telephony is in its infancy -> standards changing

❑ Research areas still exist: QoS, security, privacy, billing

❑ Must be able to support new/advanced services

Ease of Use

❑ Designed for people with no technical background

❑ Ordinary people unwilling to invest time to set-up, con-
figure, and maintain complex devices

Reliability

❑ Always on and always works
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Why Not Include More “Stuff” with the Phone?

Things we could have added

❑ LCD display (touch screen), more keys, keyboard,
mouse, ....

Adding “stuff” is bad

❑ Makes phone expensive and complex

❑ Would anyone really use it?

❑ How many ISDN phone features do you use?

Our approach for advanced features is a soft interface

❑ Phone runs web server

❑ Advanced features available via remote browser and
other network devices

❑ You pay only for those features you want
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Euphony Networked Processor
Like an Intel 486 DX2 66 with: signal processing instructions, audio
interface, network interface, and system logic all for about $7

RISC Processor

❑ R4000 like (MIPS II) RISC processor

DSP Instructions

❑ Pipelined multiplier, Extract/Saturate instructions

ATM Interface

❑ single ATM Forum UTOPIA, single or dual AT&T DPI

Digital Audio Interface

❑ Serial interface for D/A and A/D

Support Logic

Low Power (500 mW)
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Euphony ATM Telephone (EAT) Block Diagram
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EAT System Logic Board
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EAT Software Architecture
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Why an RTOS?

Why do you need an OS at all?

❑ Packet telephony application quite complex

❑ Need tasks and interrupt handlers

❑ Need standard libraries

Why not Linux?

❑ Timesharing environment brings too much baggage

❑ Hard to scale down, Not real-time

❑ Poor embedded development tools

Why VxWorks (could be any RTOS)

❑ Small and efficient real-time kernel

❑ Scalable (minimum kernel ~64K-bytes)

❑ Ported software (web server, SNMP, Java, etc....)

❑ Excellent cross development tools
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Intra-Appliance Communication

Initial software implementation was too unstructured

❑ Tightly integrated, hard to debug and add new features

❑ Motivation for a modular design that allows evolution
and experimentation

❑ Avoid tight coupling between appliance functions

❑ Flexible communication for media buffers and events

❑ Example events: call states, on/off hook, key presses

Efficient audio movement using zero-copy IObufs

❑ Coupled with EVent eXchange (EVX) for distribution

❑ One-to-many, flow controlled, sender/receiver decou-
pling

Examples of EVX use

❑ Key presses sent to digit collector and tone generator

❑ Hook events potentially of interest to several modules
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EVX

EVX delivers events posted on a “sending” port to one
or more interested modules on their “receive” ports

❑ Module communication defined in terms of port names
and event types

❑ Events can be delivered to multiple receivers

❑ Sender does not need to know about receivers

❑ Data delivered in IObufs using reference counts

❑ Flow control to prevent overrun

EVX API for creating ports, sending/receiving events,
waiting for events and network I/O

EVX application consists of three parts

❑ Application modules

❑ Initialization code that configures EVX connections

❑ EVX API library + EVX thread for event processing
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EAT Software

I/O

❑ Audio, network

❑ Keypad

❑ Hook monitor

Audio path

❑ Compression/Decompression

❑ Voice Activity Detection (VAD), Playout buffering

❑ Mixing audio samples

Telephony

❑ Tone generator

❑ Signaling, Directory access, Call controller

❑ Digit collection
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EAT Modules and Data Flow
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Status and Future Work

Ongoing

❑ Deploying more than 20 EATs in offices

❑ Building a T-1/PBX gateway using ALS

EVX

❑ Dynamic configuration of new services, coders etc

Signaling

❑ Use of per-call choice of signaling protocol

Advanced Services

❑ What features should be in network servers and what
features should be implemented by “intelligent” devices?

❑ High quality music end-point

❑ Voice enabled user interface

❑ Interactions with network services
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