
1

NOSSDAV ‘99 AT&T Labs Research

Hardware and Software Architecture of a Packet Telephony
Appliance

Cormac J. Sreenan

AT&T Labs Research
Florham Park, NJ

cjs@research.att.com
http://www.research.at.com/~cjs

Collaboration with AT&T Labs colleagues:

Mike Chan, Chuck Cranor, R. Gopalakrishnan,
Peter Onufryk, Larry Ruedisueli, Eric Wagner

http://www.research.att.com/~cjs/tops-project

2

AT&T Labs Research

Talk Outline

Packet telephony

❑ Background and previous work

Telephone appliance

❑ Design issues and principles

Hardware architecture

❑ Networked processor

❑ Telephone design

Software architecture

❑ Communications mechanisms

❑ Telephone application components

Conclusion

❑ Status, future work, related work

3

AT&T Labs Research

Packet Telephony Background

Using packet networks for voice communication

❑ Driven by potential for cost savings and new services

❑ Today mainly based on PSTN dial-in to gateway

❑ Gateways interconnected over IP networks

Need to examine consumer endpoint appliances

❑ Use of a office LANs for voice and data

❑ Penetration of home access and in-home networks

Intelligence at both the end-points and in the network

❑ Opportunity to re-partition functionality

❑ Application specific signaling supports telephony fea-
tures (conferencing, teleporting, etc.)

❑ Flexibility to support new services and capabilities (e.g.
multiple media)

❑ Implications for endpoint design

4

AT&T Labs Research

V’98)

erver

ofile)

hes calls

erver

User B

istration

eway

PSTN phone
Previous work: TOPS Architecture (NOSSDA

Call Flow:

❑ User/Terminal Registration with Directory S

❑ Directory Query (returns a call handling pr

❑ Application Layer Signaling (ALS) establis

Other servers: PSTN gateway, Terminal Tracking S

User A Directory

Query/Response

Server User Reg

PSTN Gat

Terminal

Data & Application Layer Signaling Channels

Packet Network

Tracking
Server

Mobile
Phone

PC Phone

5

AT&T Labs Research

Why Not a PC based Packet Phone?

Too Expensive ($500 too much for a phone)

Too Complex

❑ To use

❑ To install and configure

❑ To administer

Too Unsightly

❑ Big (keyboard + mouse + monitor + case)

❑ Loud (power supply fan, CPU fan, and disk)

Too Unreliable

❑ Never on when you need it

❑ Crashes often

6

AT&T Labs Research

Design Principles

Low cost (less than $100)

❑ A consumer device (a phone to put in your bedroom)

Extensibility

❑ Packet telephony is in its infancy -> standards changing

❑ Research areas still exist: QoS, security, privacy, billing

❑ Must be able to support new/advanced services

Ease of Use

❑ Designed for people with no technical background

❑ Ordinary people unwilling to invest time to set-up, con-
figure, and maintain complex devices

Reliability

❑ Always on and always works

7

AT&T Labs Research

tures:

k Connection

e DB9)

hone interface

nd microphone

t

ophone input

buttons

tus LEDs

LED
Euphony ATM Telephone (EAT)

Fea

• ATM-25 Networ

• RS232 (PC styl

• Traditional telep

• Case speaker a

• External audio
- Line outpu

- Line / micr

• Two extra push

• Three green sta

• One red status

8

AT&T Labs Research

Why Not Include More “Stuff” with the Phone?

Things we could have added

❑ LCD display (touch screen), more keys, keyboard,
mouse,

Adding “stuff” is bad

❑ Makes phone expensive and complex

❑ Would anyone really use it?

❑ How many ISDN phone features do you use?

Our approach for advanced features is a soft interface

❑ Phone runs web server

❑ Advanced features available via remote browser and
other network devices

❑ You pay only for those features you want

9

AT&T Labs Research

Euphony Networked Processor
Like an Intel 486 DX2 66 with: signal processing instructions, audio
interface, network interface, and system logic all for about $7

RISC Processor

❑ R4000 like (MIPS II) RISC processor

DSP Instructions

❑ Pipelined multiplier, Extract/Saturate instructions

ATM Interface

❑ single ATM Forum UTOPIA, single or dual AT&T DPI

Digital Audio Interface

❑ Serial interface for D/A and A/D

Support Logic

Low Power (500 mW)

10

AT&T Labs Research

Euphony ATM Telephone (EAT) Block Diagram

Audio
Amp.

K
ey

pa
d

In
te

rf
ac

e

ATM NetworkATM ATM
PHY

Memory &
Peripheral Bus

SRAM
(512K x 32)

SRAM
(512K x 32)

Flash
(512K x 32)

1 2 3

4 5 6

7 8 9

* 0 #

F1 F2

UART
(16552)

RS232 (Console)

RS232 (Debug Port)

LE
D

s

Serial
Output D/A

Ext. Line Output

Mic.
Amp.

A/D Ext. Mic. / Line Input
Case Microphone
Handset Microphone

Case Speaker
Handset Speaker

Osc.

Osc.

Osc.

Serial
Input

Sample
Clock

Osc.
Clock
Gen.

Euphony

11

AT&T Labs Research
EAT System Logic Board

12

AT&T Labs Research

EAT Software Architecture

EAT Hardware

Euphony Chip/Board Support Package

VxWorks 5.3.1

ATM Driver
(SAR + CPCS)

LA
N

E

ILM
I

U
N

I 3.1

IP + ICMP

UDP TCP

Sockets

HTTP

N
ative A

T
M

A
P

I

O
ther D

rivers

A
udio D

river

K
eypad D

river

Event Exchange
(EVX)

EAT Phone Application

F
lash F

ile S
ystem

and Services

13

AT&T Labs Research

Why an RTOS?

Why do you need an OS at all?

❑ Packet telephony application quite complex

❑ Need tasks and interrupt handlers

❑ Need standard libraries

Why not Linux?

❑ Timesharing environment brings too much baggage

❑ Hard to scale down, Not real-time

❑ Poor embedded development tools

Why VxWorks (could be any RTOS)

❑ Small and efficient real-time kernel

❑ Scalable (minimum kernel ~64K-bytes)

❑ Ported software (web server, SNMP, Java, etc....)

❑ Excellent cross development tools

14

AT&T Labs Research

IObufs

• Copy reduction techniques used to
reduce memory & latency

• Similar to BSD Unix mbufs

• IObufs are not mbufs
- Allows application specific info
- Separate control and data blocks
- Data block can be of any size

• IObufs provide a uniform buffering
mechanism used by all modules

- I/O (e.g., network and audio)
- Application

next
link
plink
iodata
start

length

application
specific

data

refcnt

iocntl{}

data

iodata{}

next
link
plink
iodata
start

length

application
specific

data

refcnt

iocntl{}

data

iodata{}

next
link
plink
iodata
start

length

application
specific

data

refcnt

iocntl{}

data

iodata{}

Qhead

to next packet in queue

15

AT&T Labs Research

Intra-Appliance Communication

Initial software implementation was too unstructured

❑ Tightly integrated, hard to debug and add new features

❑ Motivation for a modular design that allows evolution
and experimentation

❑ Avoid tight coupling between appliance functions

❑ Flexible communication for media buffers and events

❑ Example events: call states, on/off hook, key presses

Efficient audio movement using zero-copy IObufs

❑ Coupled with EVent eXchange (EVX) for distribution

❑ One-to-many, flow controlled, sender/receiver decou-
pling

Examples of EVX use

❑ Key presses sent to digit collector and tone generator

❑ Hook events potentially of interest to several modules

16

AT&T Labs Research

EVX

EVX delivers events posted on a “sending” port to one
or more interested modules on their “receive” ports

❑ Module communication defined in terms of port names
and event types

❑ Events can be delivered to multiple receivers

❑ Sender does not need to know about receivers

❑ Data delivered in IObufs using reference counts

❑ Flow control to prevent overrun

EVX API for creating ports, sending/receiving events,
waiting for events and network I/O

EVX application consists of three parts

❑ Application modules

❑ Initialization code that configures EVX connections

❑ EVX API library + EVX thread for event processing

17

AT&T Labs Research

EAT Software

I/O

❑ Audio, network

❑ Keypad

❑ Hook monitor

Audio path

❑ Compression/Decompression

❑ Voice Activity Detection (VAD), Playout buffering

❑ Mixing audio samples

Telephony

❑ Tone generator

❑ Signaling, Directory access, Call controller

❑ Digit collection

18

AT&T Labs Research

EAT Modules and Data Flow

VAD Audio In

÷ Audio Out
Playout
Buffer

Tone
Generator

Call
Controller

Keypad

HTTP
Digit

Collector

Hook Mon.

Directory
Interface

signaling
(ALS)

Network
Module

Side Tone

Audio
Decompressor

Audio
Compressor

Network
Services

mixer

mixer

Handset Speaker

Case Speaker

Ext Line Out

Handset Mic.

Case Mic.

Ext. Mic./Line In

19

AT&T Labs Research

Status and Future Work

Ongoing

❑ Deploying more than 20 EATs in offices

❑ Building a T-1/PBX gateway using ALS

EVX

❑ Dynamic configuration of new services, coders etc

Signaling

❑ Use of per-call choice of signaling protocol

Advanced Services

❑ What features should be in network servers and what
features should be implemented by “intelligent” devices?

❑ High quality music end-point

❑ Voice enabled user interface

❑ Interactions with network services

20

AT&T Labs Research

 H.323, etc

LAND

3)

are buses
Related Work

Packet Telephony Directories and Call Signaling

❑ IETF Session Initiation Protocol (SIP), ITU

Packet voice

❑ Early voice networking, e.g. Etherphone, IS

IP Telephony appliances

❑ Off-the-shelf (e.g. Selsius, Symbol)

❑ Fixed choice of coding and signaling (H.32

❑ Services via LAN-based PBX PC

Communication

❑ Zero-copy techniques, Fbufs, Rbufs, etc

❑ Distributed event services

❑ Conference bus protocols, Message/softw

21

AT&T Labs Research

cket

 audio inter-

set

and EVX

b browser
Conclusion

Comprehensive design and implementation of a pa
telephony appliance

❑ Low-cost, simple telephony device

❑ Easy to use and reliable

❑ Suitable for experimentation

Hardware

❑ Networked processor with ATM and digital
faces

❑ Traditional styling, 12-button keypad, hand

Software

❑ Real-Time OS, ATM & IP protocol stacks

❑ Efficient and extensible: zero-copy IObufs

❑ Advanced features and control using a we

	Talk Outline
	Packet telephony
	Background and previous work

	Telephone appliance
	Design issues and principles

	Hardware architecture
	Networked processor
	Telephone design

	Software architecture
	Communications mechanisms
	Telephone application components

	Conclusion
	Status, future work, related work

	Euphony ATM Telephone (EAT)
	Features:

	EAT System Logic Board
	Hardware and Software Architecture of a Packet Telephony Appliance
	Cormac J. Sreenan
	AT&T Labs Research Florham Park, NJ cjs@research.att.com
	http://www.research.at.com/~cjs
	Collaboration with AT&T Labs colleagues:

	Mike Chan, Chuck Cranor, R. Gopalakrishnan,
	Peter Onufryk, Larry Ruedisueli, Eric Wagner
	http://www.research.att.com/~cjs/tops-project
	EAT Software
	I/O
	Audio, network
	Keypad
	Hook monitor

	Audio path
	Compression/Decompression
	Voice Activity Detection (VAD), Playout buffering
	Mixing audio samples

	Telephony
	Tone generator
	Signaling, Directory access, Call controller
	Digit collection

	EAT Software Architecture
	EVX
	EVX delivers events posted on a “sending” port to one or more interested modules on their “receiv...
	Module communication defined in terms of port names and event types
	Events can be delivered to multiple receivers
	Sender does not need to know about receivers
	Data delivered in IObufs using reference counts
	Flow control to prevent overrun

	EVX API for creating ports, sending/receiving events, waiting for events and network I/O
	EVX application consists of three parts
	Application modules
	Initialization code that configures EVX connections
	EVX API library + EVX thread for event processing

	EAT Modules and Data Flow
	Packet Telephony Background
	Using packet networks for voice communication
	Driven by potential for cost savings and new services
	Today mainly based on PSTN dial-in to gateway
	Gateways interconnected over IP networks

	Need to examine consumer endpoint appliances
	Use of a office LANs for voice and data
	Penetration of home access and in-home networks

	Intelligence at both the end-points and in the network
	Opportunity to re-partition functionality
	Application specific signaling supports telephony features (conferencing, teleporting, etc.)
	Flexibility to support new services and capabilities (e.g. multiple media)
	Implications for endpoint design

	Status and Future Work
	Ongoing
	Deploying more than 20 EATs in offices
	Building a T-1/PBX gateway using ALS

	EVX
	Dynamic configuration of new services, coders etc

	Signaling
	Use of per-call choice of signaling protocol

	Advanced Services
	What features should be in network servers and what features should be implemented by “intelligen...
	High quality music end-point
	Voice enabled user interface
	Interactions with network services

	Previous work: TOPS Architecture (NOSSDAV’98)
	Call Flow:
	User/Terminal Registration with Directory Server
	Directory Query (returns a call handling profile)
	Application Layer Signaling (ALS) establishes calls

	Other servers: PSTN gateway, Terminal Tracking Server

	Related Work
	Packet Telephony Directories and Call Signaling
	IETF Session Initiation Protocol (SIP), ITU H.323, etc

	Packet voice
	Early voice networking, e.g. Etherphone, ISLAND

	IP Telephony appliances
	Off-the-shelf (e.g. Selsius, Symbol)
	Fixed choice of coding and signaling (H.323)
	Services via LAN-based PBX PC

	Communication
	Zero-copy techniques, Fbufs, Rbufs, etc
	Distributed event services
	Conference bus protocols, Message/software buses

	Conclusion
	Comprehensive design and implementation of a packet telephony appliance
	Low-cost, simple telephony device
	Easy to use and reliable
	Suitable for experimentation

	Hardware
	Networked processor with ATM and digital audio interfaces
	Traditional styling, 12-button keypad, handset

	Software
	Real-Time OS, ATM & IP protocol stacks
	Efficient and extensible: zero-copy IObufs and EVX
	Advanced features and control using a web browser

	Why Not Include More “Stuff” with the Phone?
	Things we could have added
	LCD display (touch screen), more keys, keyboard, mouse,

	Adding “stuff” is bad
	Makes phone expensive and complex
	Would anyone really use it?
	How many ISDN phone features do you use?

	Our approach for advanced features is a soft interface
	Phone runs web server
	Advanced features available via remote browser and other network devices
	You pay only for those features you want

	Euphony Networked Processor
	Like an Intel 486 DX2 66 with: signal processing instructions, audio interface, network interface...
	RISC Processor
	R4000 like (MIPS II) RISC processor

	DSP Instructions
	Pipelined multiplier, Extract/Saturate instructions

	ATM Interface
	single ATM Forum UTOPIA, single or dual AT&T DPI

	Digital Audio Interface
	Serial interface for D/A and A/D

	Support Logic
	Low Power (500 mW)

	IObufs
	Why Not a PC based Packet Phone?
	Too Expensive ($500 too much for a phone)
	Too Complex
	To use
	To install and configure
	To administer

	Too Unsightly
	Big (keyboard + mouse + monitor + case)
	Loud (power supply fan, CPU fan, and disk)

	Too Unreliable
	Never on when you need it
	Crashes often

	Euphony ATM Telephone (EAT) Block Diagram
	Why an RTOS?
	Why do you need an OS at all?
	Packet telephony application quite complex
	Need tasks and interrupt handlers
	Need standard libraries

	Why not Linux?
	Timesharing environment brings too much baggage
	Hard to scale down, Not real-time
	Poor embedded development tools

	Why VxWorks (could be any RTOS)
	Small and efficient real-time kernel
	Scalable (minimum kernel ~64K-bytes)
	Ported software (web server, SNMP, Java, etc....)
	Excellent cross development tools

	Design Principles
	Low cost (less than $100)
	A consumer device (a phone to put in your bedroom)

	Extensibility
	Packet telephony is in its infancy -> standards changing
	Research areas still exist: QoS, security, privacy, billing
	Must be able to support new/advanced services

	Ease of Use
	Designed for people with no technical background
	Ordinary people unwilling to invest time to set-up, configure, and maintain complex devices

	Reliability
	Always on and always works

	Intra-Appliance Communication
	Initial software implementation was too unstructured
	Tightly integrated, hard to debug and add new features
	Motivation for a modular design that allows evolution and experimentation
	Avoid tight coupling between appliance functions
	Flexible communication for media buffers and events
	Example events: call states, on/off hook, key presses

	Efficient audio movement using zero-copy IObufs
	Coupled with EVent eXchange (EVX) for distribution
	One-to-many, flow controlled, sender/receiver decoupling

	Examples of EVX use
	Key presses sent to digit collector and tone generator
	Hook events potentially of interest to several modules

