
1

PRISM Architecture:
Supporting Enhanced Streaming Services in a Content Distribution Network

C. D. Cranor, M. Green, C. Kalmanek, D. Shur,
S. Sibal, C. Sreenan‡ and J.E. van der Merwe∗

AT&T Labs - Research ‡ University College Cork
Florham Park, NJ, USA Cork, Ireland

Abstract
PRISM is an architecture for distributing, storing, and

delivering high quality streaming content over IP networks.
In this paper we present the design of the PRISM architec-
ture and show how it can support an enhanced set of stream-
ing services. In particular, PRISM supports the distribu-
tion and delivery of live television content over IP, as well
as the storage of such content for subsequent on-demand
access. In addition to accommodating the unique aspects
of these types of services, PRISM also offers the frame-
work and architectural components necessary to support
other streaming content distribution networks (CDN) ser-
vices such as video-on-demand. We present an overview
of the PRISM architecture focusing on components unique
to PRISM including content management, content discov-
ery, and content-aware redirection. We also describe the
PRISM testbed that we are using for experimental lab ser-
vice trials.
Keywords: streaming content distribution network (CDN),
content management, content discovery, content-aware
redirection

1 Introduction

With the emergence of broadband access networks
and powerful personal computer systems, the demand
for network-delivered full-motion streaming video con-
tent is growing. Indeed, a number of companies
have already made rudimentary efforts to deliver live
(www.icravetv.com) and stored (www.recordtv.com) tele-
vision over the Internet.1 While the traditional Web service
model can be applied to IP-based streaming content, the
user experience does not compare favorably with the qual-
ity of cable, satellite, or broadcast television. On the other
hand, compared to the Web, current television broadcasting
technologies offer high quality but provide limited choice
and allow little or no on-demand access to video content.

∗Contact author: Kobus van der Merwe, AT&T Labs - Research, 180
Park Avenue, Florham Park, NJ 07932, USA, kobus@research.att.com.

1Both have since been silenced because of legal problems.

IP content distribution networks (CDNs) provide scal-
ability by distributing many servers across the Internet
“close” to consumers. Consumers obtain content from
these edge servers directly rather than from the origin
server. Current CDNs support traditional Web content
fairly well, however support for streaming content is typ-
ically less sophisticated and often limited to the deliv-
ery of fairly low quality live streams (so called “web-
casting”) and distribution of low-to-medium quality video
clips (“clip-acceleration”). In order for Internet-based
streaming to approach the same level of entertainment
value as broadcast media, CDNs must drastically improve
the quality of streaming that can be supported. Addition-
ally, streaming CDNs will become more sophisticated in
terms of services that can be supported in order to accom-
modate new business models and new types of service of-
ferings.

In this paper we present PRISM, a Portal Infrastruc-
ture for Streaming Media.2 PRISM is an architecture for
distributing, storing, and delivering high quality streaming
media over IP networks. PRISM enables services that are
more sophisticated than those currently available on the In-
ternet. Our approach has been to consider in detail how
such an architecture will support these types of stream-
ing services by considering a TV-like service as an exam-
ple. In particular, PRISM supports both the distribution
and delivery of live television content over IP, as well as
the storage of such content for subsequent on-demand ac-
cess, i.e. stored-TV (STV). We are not aware of any ex-
isting streaming CDN architectures with the latter capabil-
ities. The PRISM-based STV service allows users to view
content based on the name of the content as well as the
time at which it was “aired.” For example, users can re-
quest programming that aired on CNN at 1PM on January
1, 2001. Content stored inside the network is made acces-
sible throughout the whole PRISM infrastructure. A user
based in the U.S. can access European sporting events or
other TV content — both live or on-demand. PRISM also

2An preliminary version of this paper was presented as a work-in-
progress report at the NOSSDAV 2000 workshop [1].

2

allows individual users to specify content to be stored in
a “network-VCR” type service. In addition, a managed
STV service where certain “bundles” of content are always
stored by the service provider for user access is feasible.
An example service bundle could include the storage of
the three most recent hours of content for a large number
of channels, the storage of the peak viewing hours for a
smaller set of channels stored for a week, and the archival
of a set of popular programs for several months. This type
of PRISM service makes available significantly more con-
tent to users compared to emerging personal/digital video
recorders.

Our goal is to provide content at a quality level compa-
rable to existing broadcast TV. Coupled with the potential
on-demand nature of PRISM services, this translates into
significant access bandwidth requirements. Technically,
broadband access technologies such as cable and xDSL
offer enough bandwidth for PRISM services at entertain-
ment quality. An actual service offering would also depend
on business considerations both in terms of broadband ac-
cess economics and business models that are attractive to
content providers. In the near future advances in encod-
ing technology might also help to reduce the bandwidth re-
quirements for PRISM-like services.

While we focus on applying the PRISM architecture to
services involving live and stored television content, the
resulting framework and architectural components are ap-
plicable to other content-based streaming services such as
video-on-demand. The components of the PRISM architec-
ture are introduced in Section 2. These components include
content naming, content management, content discovery,
and content-aware redirection. In Section 3 we present a
sampling of related work. The PRISM architecture is be-
ing realized as a trial within our laboratories. We briefly
describe the status of this effort as well as future plans in
Section 4.

2 PRISM Architecture

PRISM facilitates the creation of services that make both
live and on-demand TV content available over an IP net-
work. The PRISM architecture is built around three types
of basic elements, as shown in Figure 1:

Live sources: receive content from a content provider, en-
code and packetize it, and then stream it into the
PRISM IP network infrastructure.

Portals: receive multimedia content from live sources and
other portals and transmit it to PRISM clients. Por-
tals can store and archive live content, thus allowing
content to be viewed on-demand. Portals also provide
VCR-like functions such as fast-forward and rewind
to clients. Portals are positioned between clients and
live sources, typically at or upstream of a bandwidth
discontinuity such as a cable head-end.

Backbone Network Access Network

Content distribution: from live sources to portals
and portal-to-portal
Content delivery: from portals to clients

 Live
Source

Portal

 Live
Source

 Live
Source

Portal
Portal

 Live
Source

Client

Client

Client Client

Figure 1: PRISM data plane

Clients: receive content from a portal and display it to
end-users. Clients are networked set-top boxes or PCs
connected to the backbone using broadband access.
A client normally interacts with a local portal that is
close to it in the network. Note that a client’s local
portal may act as a proxy when it receives a request
for content that it does not have locally stored. This
allows the local portal to provide VCR-like controls to
the client even when the content being viewed is com-
ing from a remote portal, and allows the local portal
to cache the recently viewed content.

The three types of PRISM elements communicate
through network interactions. There are two classes of
PRISM network interactions: those that occur on the data
plane and those that occur on the control plane.

The data path functionality is required by any streaming
CDN. Since it is not unique to PRISM it is only briefly con-
sidered below. Figure 1 shows PRISM’s data plane compo-
nents:

Content distribution: transferring content from a live
source to one or more portals, or transferring content
between portals. Content should be transfered effi-
ciently while maintaining an appropriate balance be-
tween timeliness and reliability.

Content delivery: streaming content from a portal to one
or more clients. In order to provide acceptable per-
ceived performance for latency-sensitive operations
such as VCR-like functions it is important that portals
be topologically close to clients.

The remainder of the architectural discussion focuses on
the PRISM control plane. A unique aspect of the PRISM
control plane comes from storing live content inside the
network for subsequent on-demand access. This differs
from on-demand access in conventional streaming CDNs
in that there is no well-known origin server where con-
tent is known to reside. This has a major impact on the
control plane architecture. The role of PRISM’s control

3

Backbone

Access

Portal

Content
Manager

 Content
Discovery

Inputs:
- service
 type
- SLA
- load
- policy

ClientPortal

PortalPortal

Content Management
Content Discovery
Content Aware Redirection

Inputs:
- content
 location
- client
 location
- load
- client QoS
- policy

 content
location

Redirector

Figure 2: PRISM control plane

plane is to control how content is located and flows through
the PRISM infrastructure. Figure 2 shows the three main
PRISM control plane components:

Content management: coordinating and managing the
storage of content at portals. Input to the content
management process includes information on type of
service, service level agreements (SLAs) with content
providers, portal capacity and load caused by user ac-
cess. Section 2.2 describes a content management sys-
tem that can accomodate service-specific input to sup-
port a stored-TV service.

Content discovery: determining the existence and loca-
tion of streaming content within the PRISM infras-
tructure. When users request specific content, PRISM
uses a content discovery mechanism to determine
from which portal or live source the content can be
obtained. Section 2.3 presents our content discovery
solution. Note that while content discovery is trig-
gered by a user request, the actual discovery process,
as shown in Figure 2, happens between PRISM enti-
ties and is not visible to the user other than through
the redirection process discussed next.

Content-aware redirection: redirecting user requests to
the “appropriate” portal from where their request can
best be satisfied. The location of the requested con-
tent along with other inputs, can be used to determine
the appropriate portal from which content should be
served to the customer. Basic redirection capabilities
are part of all edge servers including portals. Spe-
cialized redirection servers, the redirector(s) in Fig-
ure 2, will however typically be deployed to perform
this control plane function. The details of our request
redirection solution are presented in Section 2.4.

Note that any TV content that was “aired” could be avail-
able via PRISM. Thus, in addition to these three control
plane components, PRISM also requires a content naming

 distributor ";" location ">"

:= "stv:" channel_name
 | "stv:" channel_name "?" spec

:= "start=" utctimespec
 | "start=" utctime ";end=" utctime
 | "program=" name
 | "program=" name ";offset=" time

channel_name := "<" brand ";" channel ";"

name

Figure 3: Naming scheme URI syntax

scheme to allow us to uniquely identify all or parts of a
broadcast stream. We describe the naming scheme we have
adopted in the next section.

2.1 Content Naming

In PRISM, content is referenced by name, that is by Uni-
form Resource Name (URN), rather than by its location
or Uniform Resource Location (URL).3 Identifying con-
tent by name rather than by its location allows content to
be accessed in a variety of ways (e.g. schedule based or via
content-aware search engines) without having to make the
portal structure of PRISM externally visible. The naming
scheme should also be compatible with the Web. Recogniz-
ing that existing TV broadcasts are a rich source of content,
our naming scheme allows such content to be identified
with reference to the existing channel names, TV network
distributor, and original viewing location. To properly cap-
ture localization of content from a cable system it may be
necessary to specify which cable head-end the content was
sent over. The naming scheme should therefore also allow
content to be identifiable to a fine level of granularity while
at the same time not requiring such detail when it is unnec-
essary. Furthermore, since content is being accumulated
and stored over time, it must be easy to reference content
by date and time (e.g., “show me ABC TV aired on June
30th, from 9AM to 10AM”). PRISM gains access to con-
tent by digitizing TV channels for distribution and delivery
over IP.

The syntax of our naming scheme is shown in Figure 3.
The channel name (described in detail below) identifies a
unique stream of content. The start and stop times are ex-
pressed as UTC times [3] (e.g. “utc:20010215T2200”).
The program name is a text string identifying content
within a particular channel, and the time offset is rel-
ative to the start of a program in seconds (e.g. “pro-
gram=nypd blue” or “program=nypd blue;offset=60”). A

3URNs name content without providing location information, while
URLs specify the location of content without necessarily providing a
meaningful name. For example, in PRISM, names of TV shows are en-
coded in URNs, while file and portal host names are encoded in URLs.
More generally, identifiers such as URNs and URLs are called Uniform
Resource Identifiers (URIs) [2].

4

Channel name Meaning (for listings) Meaning (for requests)
<abc;;;> list available ABC stations the default ABC station
<abc;wabc;;> list available source for ABC station WABC

(broadcast, cable, satellite, etc.)
ABC station WABC from the default source

<abc.net.au;;;> list available Australian Broadcasting Co.
sources

the default source for Australian Broadcast-
ing Co.

<abc;;directv;> list available ABC stations on DirectTV the default ABC station on DirectTV
<abc;wabc;comcast;orange nj> test for ABC station WABC on Comcast’s

Orange, NJ system
ABC station WABC on Comcast’s Orange,
NJ system

Table 1: Example channel names

URN with no time offset implies the current live version of
that content.

The channel name consists of four elements, as shown
in the bottom of Figure 3. The brand is the channel
name users typically know, e.g. a simple identifier such
as “ABC,” or a fully qualified domain name for the brand.
The channel is the call letters or channel number associ-
ated with the content. In some cases this field may be null.
The distributor indicates the entity that is distributing the
content, e.g. the owner of a broadcast station, a cable com-
pany, a satellite company, or content distribution system on
the Internet. The location is the source of the specified ver-
sion of the content. This can be used to indicate a specific
broadcast tower or cable head-end. All these elements are
optional. The meaning of unspecified elements in a channel
name depends on the context in which the name was used.
If the channel name is used in a channel listing query, then
unspecified elements match all the available values for the
given user. Otherwise, unspecified values take the default
values from the user profile. Examples of channel names
are shown in Table 1. Note that end users need not under-
stand or be aware of the channel naming syntax as it can
easily be hidden behind a user friendly Web interface.

Industry adoption of work being done within the
IETF’s URN working group allows for the use of URN
schemes such as ours. In the absence of such a sup-
port infrastructure in the current Internet, we follow com-
mon practice of encoding our URNs within a URL.
For example, stv:<abc;wabc;;> can be encoded in
a Real Time Streaming Protocol (RTSP) [3] URL as:
rtsp://server/prismurn/abc/wabc/*/*/.

2.2 Content Management

PRISM content management is depicted in Figure 4. A
content manager(s) communicates with a set of portals.
The main purpose of content management in PRISM is to
coordinate the distribution and storage of content within
the network infrastructure. This is done in a way that bal-
ances the resources required and those available against the
timely delivery of requested content to users. A content
manager receives external input, for example by means of
a user interface or a configuration file, as well as feedback

Portal

Portal
Portal

Portal

Content
Manager

Portal

Portal
Portal

Portal

Delegated
 Content
 Manager

Master
Content
Manager

 Inputs:
- service
 type
- SLA
- policy Inter-domain

Intra-
domain

Intra-
domain

UPDATE

REPORT

Figure 4: Content Management

from the portals it is managing.
Unlike conventional video-on-demand (VoD) solutions

where the content is fairly static, the STV service we are
considering has the additional property that new content is
being added continuously. Therefore, based on the service
bundle being offered to users, the infrastructure needs to be
instructed on which TV streams are of interest and which
parts of those streams should be stored for what period of
time. This adds an aspect to PRISM content management
beyond the efficient management of large media objects re-
quired by all streaming CDNs.

Figure 4 shows the two main types of messages involved
in PRISM content management. (There is also an OP-
TIONS message which allows discovery of capabilities and
mode of operation.)

UPDATE messages: originate from the content manager
to instruct the portal regarding policies, resource us-
age and content manipulation. A content manager can
instantiate storage and eviction policies on a portal.
The content manager tells portals what content should
be obtained when and which storage and eviction poli-
cies should be bound to such content. UPDATE mes-
sages allow the content manager to tell the portal how
its resources should be partitioned and which entity
is responsible for managing it. The main resource of
concern is portal storage space, but other resources
could also be managed in this way.

5

.

.
<Binding>
 <Store>
 rtsp://staging/customerY/firstclip.mov
 </Store>
 <Delete at-utc-time="20011001T000001Z">
 rtsp://staging/customerY/firstclip.mov
 </Delete>
</Binding>
.
.

Figure 5: UPDATE message contents: instructions for stor-
ing and evicting a file

REPORT messages: carry information from portals to a
content manager(s). Messages can be triggered by a
request from a content manager or can be sent from a
portal as a result of some other trigger e.g. a timer ex-
piring or a threshold being reached. A portal uses this
message to inform the content manager about its avail-
able resources. This is primarily used at portal startup,
allowing the content manager to know what resources
it has available. A portal also uses the REPORT mes-
sage to tell the content manager about content usage
statistics and load. The content manager uses this in-
formation in dynamic content management decisions.
For example, a content manager could instruct a por-
tal to retrieve and store a popular new movie if the set
of portals that currently have the movie are becoming
loaded.

As indicated in Figure 4, we allow multiple content man-
agers to manage the same portals. This is useful if different
content managers are specialized for different services or
types of content. For example, one content manager could
exclusively deal with a movie-on-demand service, while
another could realise STV. Figure 4 also shows interac-
tion between content managers in different administrative
domains, facilitating inter-CDN content management. For
example in a content brokering [4] arrangement, one CDN
might want to push content to the peering CDN before redi-
recting requests for that content to that CDN.

The essence of the content management exchanges is
best conveyed by means of a few simple examples. In
concert with widespread industry acceptance for the use of
XML [5] technology for machine-to-machine communica-
tion, we use XML to encode the exchange of information
between content managers and portals. Figure 5 shows an
UPDATE message fragment indicating to the portal that it
should immediately download the clip indicated. This clip
will then be stored at the portal and be deleted at 1 sec-
ond after midnight on October 1st 2001 (according to the
indicated UTC time).

Figure 6 shows part of a slightly more involved UPDATE
message. This message creates policies on the portal, man-
ages resource usage on the portal as a whole, and also per-

.

.
<Policy>
 <Create> my_stv_policy
 <Type duration="5h">
 DeleteOlderThan
 </Type>
 </Create>
</Policy>
<Associate>
 <Storage allocation="50%"
 manager="cm.att.com" />
 <Storage allocation="50%"
 manager="local" />
</Associate>
<Binding>
 <Store>
 rtsp://prism/prismurn/pbs/*/*/*
 </Store>
 <Delete eviction-policy="my_stv_policy">
 rtsp://prism/prismurn/pbs/*/*/*
 </Delete>
</Binding>
.
.

Figure 6: UPDATE message contents: instructions for pol-
icy creation, resource usage and file handling

forms content manipulation.

• The first part instructs the portal to create a named pol-
icy (my stv policy) which will evict any content
bound to it after it has been stored for five hours.

• The second part of the message tells the portal that
50% of its storage resources will be managed by the
specified content manager (cm.att.com), while the
remaining 50% is available for local caching by the
portal (indicated by the fact that this space is delegated
to the “local” content manager).

• Finally, the portal is instructed to store live content as-
sociated with the indicated “PBS” URL. This content
will be stored continuously for 5 hours, at which time
the oldest part will be evicted.

For lack of space, example REPORT messages are not
shown.

2.3 Content Discovery

When a client requests content from PRISM, the redirector
first uses content discovery to determine the location of the
content. Usually the redirector then redirects the client to a
portal that has the requested content, but a client can also
be redirected to a portal that does not currently have the
content. In this latter case the actual location of the content
may be encoded in the redirection URL, or the portal may
itself query the content discovery service. (Client redirec-
tion is described in Section 2.4.)

6

PRISM decouples content discovery and content man-
agement functions. An alternative would be an integrated
approach, where the content management system maintains
all of the information used for content discovery. How-
ever, the integrated approach has several limitations. First,
it does not readily support local storage policies/decisions
by portals, e.g. to allow discovery of content that is cached
by portals. Second, it is conceivable that different content
management solutions with different levels of sophistica-
tion or supporting different services will be used within the
same infrastructure. In this case, having a single content
discovery mechanism is more efficient than having to inter-
face with several content management systems to do con-
tent discovery.

PRISM’s content discovery architecture is built on a
Mapping Service that maintains a mapping between con-
tent, identified by a URN, and a set of URLs for the con-
tent’s location. Each portal manages its own content in
accordance with content management policies. Each por-
tal dynamically updates information about content stored
in the Mapping Service using the PRISM URI Mapping
Protocol (UMP),4 and queries the Mapping Service using
UMP for the location of a piece of content. The Mapping
Service maintains meta-data describing content, such as its
type, encoding, and descriptive information. This meta-
data can be used to limit responses to queries. UMP reuses
both the syntax and semantics of existing protocols, such
as HTTP and SIP, and is described below.

UMP was designed to allow several specific architec-
tural models for implementing the Mapping Service, of-
fering different tradeoffs in terms of scalability, reliability,
and supporting different administrative models.

2.3.1 Mapping Service Architecture Models

Figure 7 illustrates a portal infrastructure in which portals
are organized in neighborhoods, which in practice might
be located in geographically separated data centers. The
Mapping Service consists of a Local Mapping Server in
each neighborhood, and a Global Mapping Server. Local
Mapping Servers are updated by local portals using UMP
with information about content that they store, and resolve
all queries for local content. The Global Mapping Server
is updated by every Local Mapping Server, and resolves
queries that can’t be resolved locally. The reliability and
scalability of this approach can be improved by replicating
the Mapping Servers. If the load on the Mapping Service
is dominated by queries rather than updates (this is likely
since queries are triggered by client requests, while con-
tent is updated infrequently), then the simple approach of
replicating the servers and distributing queries amongst the
replicas is attractive, provided that the database size is rea-
sonable. Since the size of the meta-data is orders of mag-

4Note that UMP maps from URNs to URLs. In general, however, it
might map between any type of URI and we therefore use the more general
term.

 Central
Mapping Server

Portal Portal Portal

Local
Mapping
Server

Portal Portal Portal

Local
Mapping
Server

Portal Portal Portal

Local
Mapping
Server

Neighborhood #1 Neighborhood #3

Neighborhood #2

Figure 7: Hierarchical Mapping Service

nitude smaller than the size of the (video) objects, it ap-
pears that this approach is feasible even for a large stream-
ing CDN.

UMP also allows more distributed architectures for the
Mapping Service. In one approach, each portal imple-
ments a Local Mapping Server responsible for its content.
Queries are multicast to all portals; portals containing the
content respond directly to the node initiating the query. In
a variation of this approach, portals update a Local Map-
ping Server in their neighborhood, and Local Mapping
Servers multicast queries to remote Mapping Servers for
non-local content.

These schemes can be combined and extended to sup-
port multiple levels of hierarchy and multiple administra-
tive domains. For example, a CDN can use a hierarchi-
cal approach where the Global Mapping Server acts as a
gateway to another CDN that uses a different implementa-
tion approach (e.g., distributed). Mapping Servers acting
as gateways between administrative domains can be con-
figured with policies to control UMP information flow. For
example, two CDNs might act as peers so that each CDN is
willing to serve specific content to the other CDN. However
for other content, the CDNs are not peers. In this case, the
gateway nodes would be configured with policies to filter
UMP updates crossing the CDN boundary.

2.3.2 URI Mapping Protocol

UMP is a request-response protocol, in that a node that
receives a request message always generates a response.
Pipelining of requests is allowed so that the order of re-
sponses does not need to match the order of requests. On
receipt of a UMP request, a node can generate a response
or can forward the request to other nodes. In the latter
case, this (intermediate) node is responsible for collecting
the responses, possibly filtering or aggregating them, and

7

UPDATE rtsp://redirector/prismurn/abc/wabc/comcast/*/ UMP/1.0
Via: UMP/1.0/UDP portal2.att.net
Trans-ID: 87654321@portal2.att.net
TTL: 2
UpdateMode: update
ToURI: rtsp://portal2.att.net/abc.m2t

UMP/1.0 200 OK
Via: UMP/1.0/UDP portal2.att.net
Trans-ID: 87654321@portal2.att.net

Figure 8: UMP UPDATE message exchange

QUERY rtsp://redirector/prismurn/abc/wabc/comcast/*/ UMP/1.0
Via: UMP/1.0/UDP portal5.att.net
Trans-ID: 12345678@portal5.att.net
TTL: 4
MaxMappings: 5

UMP/1.0 200 OK
Via: UMP/1.0/UDP portal5.att.net
Trans-ID: 12345678@portal5.att.net
FromURI: rtsp://redirector/prismurn/abc/wabc/comcast/*/
ToURI: rtsp://portal2.att.net/abc.m2t
ToURI: rtsp://portal10.att.net/abc.sdp

Figure 9: UMP QUERY message exchange

forwarding one or more responses to the request originator.
Thus, UMP is extremely flexible: UMP can be used in a
simple client-server model, or messages can be forwarded
along a mesh of nodes.

There are currently three UMP request methods defined:
UPDATE, QUERY, and OPTIONS.

• An UPDATE request is sent to indicate that content
identified by one or more From-URIs (or URNs in the
PRISM case) is stored at a particular To-URI (or URL
for PRISM).

• A QUERY request is sent to request a mapping from a
particular From-URI (URN) to one or more To-URIs
(URLs).

• An OPTIONS request is sent to request parameters re-
lated to UMP operation (e.g., centralized versus dis-
tributed, multicast or unicast).

Figure 8 shows a sample UMP update exchange with a
request from a portal to a mapping server, and a response
from a mapping server to a portal. The UMP UPDATE
request message updates the URN mapping for WABC
broadcast via Comcast, and indicates that this content is
stored on portal2.att.net. The Via header contains the iden-
tity of the request originator, portal2, and a transaction id
uniquely identifies the transaction. The TTL limits the
scope, the mode indicates that this is an update (as opposed
to a deletion), and the ToURI gives the URL for accessing
the object. The response indicates that the update is suc-
cessful.

Figure 9 shows a sample UMP query exchange for the
default ABC channel. The figure illustrates a request from

Browser

Player

Client

Backbone
(2)

 Web
Server

(1)

(3)(4)

(6)
(5)

Mapping
 Server

update

Redirector

Portal1

Portal2

Portal3

(7)

(1) content selection

(2) start player

(3) request content from
 redirector
(4) redirector queries
 mapping service

(5) redirect client to
 portal

(6) request content from
 portal
(7) optional request to
 remote portal

Figure 10: Content-aware redirection

portal to mapping server, and a response from mapping
server to portal. The query indicates that the mapping
server should return at most five URI mappings. The re-
sponse indicates that this object is stored on portal2 (as up-
dated above) and at portal10.

An analysis of the scalability and performance of UMP is
beyond the scope of this paper. Note however that the num-
ber of UPDATE messages exchanged relates to the rate at
which live content is being stored in and evicted from por-
tals. This is a function of the content management policies
employed and largely under control of the service provider.
QUERY messages are triggered by user requests and are
therefore a function of user behavior.

2.4 Content-Aware Redirection

The default PRISM redirection policy is to have the client
directed to its local portal in order to allow VCR-like func-
tions on streams to be performed in a fast and respon-
sive fashion. This policy is used even in situations where
the content may not currently be stored at the local por-
tal. However, there are situations where streaming content
through the local portal is inefficient. This is especially true
in cases where the local portal is overloaded. In such sit-
uations a client may be directed to other portals to access
the content. These aspects of PRISM redirection are also
found in existing CDN redirection systems. The PRISM
redirection system extends this basic functionality to also
take the content location into account during redirection.

Figure 10 shows the steps of the redirection process.
First, the client uses a Web-based program guide or some
other service to obtain the URN of content to be viewed.
Second, this URN, encoded within a URL that points to
the redirector, is passed to a running PRISM client, e.g.
rtsp://redirector/prismurn/cnn/*/*/*.
This client may be PRISM-specific, or it may be a
legacy RTSP-based media player that is unaware that it
is communicating with the PRISM infrastructure. Third,

8

the client connects to the redirector (as specified in the
URL) and requests the content using the RTSP protocol.
Fourth, the redirector queries the Mapping Service as
to the availability and location of the requested content
using the UMP protocol. Fifth, the redirector takes into
account the results of the Mapping Service query, the
current load, and the proximity of the client and redirects
the client to the “best” portal to serve the request. This
is typically accomplished with an RTSP redirect, though
alternative techniques may be used. Finally, on receipt of
the response, the client issues RTSP requests to the portal
specified by the redirector to start streaming.

If the portal serving the redirected client does not have
the content locally, it must first obtain it before it can start
streaming. To prevent another request to the Mapping
Service in this case, the URI the client receives from the
redirector contains both the original URN as well as the
URL where the content can be retrieved from (i.e. the
result of the query to the Mapping Service). For exam-
ple, rtsp://portal3/prismurn/cnn/*/*/*?
url=rtsp://portal2/33.m2t, means that the
client asked for the local live version of CNN and that it
can be obtained from the indicated URL. Having both the
URN and the URL encoded in the URI presented to the
local portal, allows the portal to use the original URN to
query the Mapping Service if, for example, it transpires
that the supplied URL is no longer valid.

3 Related Work

PRISM’s primary focus is on the unique mechanisms re-
quired to support the delivery of TV-related services over
IP. For example the PRISM naming scheme is designed to
easily address arbitrary programs and time-ranges among
the entire set of broadcast TV channels worldwide. PRISM
requires large amounts of distributed storage capable of
archiving all of this content, thus requiring mechanisms to
discover where particular content is located. Because of
the highly distributed nature and quantity of the stored con-
tent, PRISM-specific management, mapping and discovery
protocols have been devised. The PRISM content discov-
ery mechanism has some similarity with directory based
cooperative caching systems [6]. In cooperative caching,
however, finding a copy of an object in a cache is an opti-
mization issue because the object can always be retrieved
from the origin. This is not the case in PRISM where there
is no origin after the content has been aired, and finding
a stored version in the infrastructure is crucial for correct
operation. Other required PRISM mechanisms have a high
degree of commonality with existing and proposed CDNs.
For example, the distribution of content between PRISM
Live sources and Portals could take place using the ap-
plication layer multicasting mechanisms of Overcast [7],
Scattercast [8] or Yoid [9], instead of IP Multicast. All
of the latter three systems focus primarily on the distri-

bution aspects, detailing the mechanisms by which CDN
nodes become aware of each other, and form distribution
trees. While Overcast can be used to store and distribute
broadcast quality TV clips on demand, the details to sup-
port large scale TV distribution have not been addressed.
PRISM shares some features with Scattercast, such as the
use of strategically placed agents/proxies and the use of a
distribution architecture on which a range of services can
be deployed, but their aims are fundamentally different.
Scattercast focuses on providing a well known communi-
cation service (multipoint distribution) without the short-
comings of IP Multicast.

There is a considerable body of existing work related to
content naming and request routing. In PRISM we employ
a general location-independent content naming scheme
based on the use of naming URIs to identify content. Lo-
cating services by name rather than location was also the
basis on which the Intentional Naming System was de-
signed [10]. INS routes client requests to the services of
their choice based on a hierarchical naming scheme con-
sisting of name-value pairs. Unlike PRISM, the INS system
is not aimed at wide area networks and office automation
type applications are described. This part of our work is
also related to work-in-progress in the URN working group
within the IETF. Specifically the working group has defined
how the Dynamic Delegation Discovery System (DDDS)
might be realized using extensions to the domain name
system (DNS) [11]. Such a system would allow a DNS
lookup to point to a resolver other than another DNS server,
based on a set of rules applied to the query. For example,
a PRISM STV-URN based DNS query could be resolved
to an interface associated with a PRISM mapping server or
redirector to map the URN to a URL.

In [12] the problem of referencing television broadcasts
via Web browsers running on consumer TV appliances
such as set-top boxes was considered. That proposal de-
fines a URI for TV broadcast channels, based on the use
of DNS-style domain names to uniquely identify TV chan-
nels. It addresses a less general problem than our naming
scheme, which allows a finer level of detail to be used in
referencing content.

From a service point of view, various services are emerg-
ing that utilize home based consumer equipment to manage
the recording and time-shifting of TV content (e.g., Re-
playTV and TiVo). Our work differs from this in that it
considers the primary storage medium to be located in the
network. This has a number of advantages. In particular,
the storage is shared by multiple users and the library of
shared content is potentially vast. A similar service con-
cept is described in [13] where sophisticated analysis and
indexing techniques are employed to allow users to browse
previously aired TV content.

9

4 Status and Conclusions

The PRISM architecture is being realized as a testbed
across a number of geographically dispersed laboratories.
With this trial we are verifying the overall architecture
through prototype implementation of all of the protocols,
systems, and mechanisms that make up a stored-TV ser-
vice.

The current PRISM testbed consists of a network
of portals running prototype software on FreeBSD
(www.freebsd.org) servers. Our portal network is dis-
tributed among several sites with varying levels of connec-
tivity, including a fairly high capacity intranet in the United
States and a public Internet trans-oceanic connection to
Cork, Ireland. In addition one of the facilities is equipped
with an operational cable plant, allowing experiments over
a real broadband access network. The portal software re-
ceives and transmits data using standard RTSP/RTP and
can therefore deal with any standard compliant streaming
software including commercial streaming software. This
allows us to make use of the software-only QuickTime
client as a low-quality PRISM client. We also have our own
PC-based MPEG-2 PRISM client which in addition to pro-
viding higher quality allows us to take full advantage of the
VCR-like capabilities of the system. In addition we have
a self-contained MPEG-2 video endpoint or set-top-box,
which allows PRISM-generated content to be viewed on
a TV. Finally, the testbed also has a number of live sources
which continually encode television and stream it into the
network. Content is encoded both in MPEG-2 streams as
well as lower quality streams suitable for the QuickTime
clients.

In the current operational system, content management is
done in static fashion by having each portal read a configu-
ration file at startup telling it where to receive content from
and the storage/eviction policy that should be applied to
that content. Experience with this simple implementation
served as input into the more sophisticated content man-
agement system discussed in this paper which is currently
being implemented to replace the static solution. Portals
inform a centralized implementation of the mapping server
of the content they are storing via the PRISM UMP proto-
col. The current redirector implementation only takes into
account the location of the requested content and the loca-
tion of the requesting client. Users can access this service
through two Web based interfaces. One Web interface pro-
vides a simple TV-guide like listing of the available con-
tent. The second Web interface employs the indexing tech-
nology described in [13] to offer search capability of con-
tent stored in the PRISM infrastructure.

The stored-TV service we have designed is an example
of the more sophisticated services that future CDNs will
have to support. We are continuing our work in this do-
main by extending the capabilities and reach of our testbed
and by considering the applicability of our architecture and
protocols to current industry activities.

Acknowledgments

The self-contained video-endpoint described in Section 4
was developed by Larry Ruedisueli of AT&T Labs Re-
search. David Gibbon, also from AT&T Labs Research,
adapted the SBTV system [13] to allow its use with the
PRISM infrastructure.

References

[1] A. Basso, C. D. Cranor, R. Gopalakrishnan, M. Green,
C. Kalmanek, D. Shur, S. Sibal, C. Sreenan, and J. van der
Merwe, “PRISM, an IP-based architecture for broadband
access to TV and other streaming media.” Proceedings of
NOSSDAV 2000, June 2000.

[2] T. Berners-Lee, R. Fielding, and L. Masinter, “Uniform Re-
source Identifiers (URI) : Generic Syntax.” IETF RFC 2396,
August 1998.

[3] H. Schulzrinne, A. Rao, and R. Lanphier, “Real Time
Streaming Protocol (RTSP).” IETF RFC 2326, April 1998.

[4] A. Biliris, C. Cranor, F. Douglis, M. Rabinovich, S. Sibal,
O. Spatscheck, and W. Sturm, “CDN Brokering,” Dec 2000.
Submitted for publication.

[5] W3C, “Extensible Markup Language (XML).” http://
www.w3.org/XML/.

[6] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, reuse, re-
cycle: An approach to building large internet caches.” 6th
Workshop on Hot Topics in Operating Systems, May 1997.

[7] J. Jannotti, D. K. Gifford, K. L. Johnson, M. F. Kaashoek,
and J. James W. O’Toole, “Overcast: Reliable Multicasting
with an Overlay Network.” OSDI 2000 Conference, October
2000.

[8] Y. Chawathe, Scattercast: An Architecture for Internet
Broadcast Distribution as an Infrastructure Service. PhD
thesis, University of California at Berkeley, Dec 2000.

[9] P. Francis, “Yoid: Extending the Internet Multicast Ar-
chitecture.” Unrefereed Report, April 2000. Available
from: http://www.isi.edu/div7/yoid/docs/
index.html.

[10] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lil-
ley, “The design and implementation of an intentional nam-
ing system,” Operating Systems Review, vol. 34, pp. 186–
201, December 1999. 17th ACM Symposium on Operating
Systems Principles (SOSP’99).

[11] M. Mealling and R. Daniel, “The Naming Authority Pointer
(NAPTR) DNS Resource Record.” IETF RFC 2915, Sept
2000.

[12] D. Zigmond and M. Vickers, “Uniform Resource Identifiers
for Television Broadcasts.” IETF RFC 2838, May 2000.

[13] D. Gibbon, A. Basso, R. Civanlar, Q. Huang, E. Levin, and
R. Pieraccini, “Browsing and Retrieval of Full Broadcast-
Quality Video.” Packet Video Workshop, April 1999. Avail-
able from: http://mediabank.research.att.
com/sbtv/.

