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Characterizing Large DNS Traces Using Graphs

Charles D. Cranor, Emden Gansner, Balachander Krishnamurthy, Oliver Spatscheck

Abstract— attempts to obtain a resource identified by a Uniform Re-
The increasing deployment of overlay networks that rely source Locator (URL) by contacting the specified Web site
on DNS tricks has led to added interest in examining DNS ysing the HyperText Transfer Protocol (HTTP [1]). Each
traffic. In this paper we report on a characterization of DNS R has a server component whose IP addresses has to
traffic gathered over a period of several weeks at Internet ; ; ;
Gateway Routers (IGRs) in the AT&T Common Backbone. be determined by using "?‘ DNS qukup In order to set up
a transport layer connection on which the HTTP message

The characterization is carried out using several novel tech-
niques to identify clients, local DNS servers, and authorita- transfer occurs. For example, a Web request for the URL

tive DNS servers. Our techniques include passive and active http://www.example.com/index.html requires
measurements, graph-based analysis, examination of out-resolution ofwww.example.com to an IP address.
liers, and explicit checks against data obtained from sev-  \\ep traffic is asymmetric by nature—a large number of
eral external sources. Our contribution is the reductl_on of requests are directed to a few thousand sites. This has re-
a very large data set (over 1 terabyte of raw data) into a . . .

sulted in many busy sites offloading frequently requested

significantly smaller representation that is ideally suited for S
answering protocol-specific semantic queries quickly. After '€Sources to Content Distribution Networks (CDNs). A

categorizing the addresses, we use the network aware clus-CDN is an overlay network that typically uses DNS-based
tering technique to group local DNS servers. By juxtaposing redirection [2] to allow users to fetch resources from

the DNS server clusters with clusters formed by Web clients ‘nearby’ caches. The widespread deployment of such
obtained from a large portal Web site, we determine the dis- overlay networks has led to further increase in DNS traffic.

tribution of identified DNS servers in busy clusters. Ava- o jncrease in Web traffic and the introduction of
riety of applications are examined, ranging from identifying CDNs led k a broad d di F1h
suspected zombies to helping Content Distribution Networks s led us to seek a broader understanding of the nature
in mapping location of DNS servers. and use of the DNS protocol. There have not been many
significant measurement studies of DNS traffic in recent
research literature. The study described in [3] focuses on
the evaluation of the proximity of a small set of clients to
Among the primary difficulties of Carrying out Internet3807 local DNS servers. In contrast, we have been collect-

measurements are issues of scale and the representafigrine network flow-level data of DNS traffic at multiple
of large data sets in a format that is suitable for domailternet Gateway Routers (IGRs) in the AT&T Common
specific queries that can be answered rapidly. Often tBackbone. In our study we identified 564,077 suspected
scale issue inhibits work, leading to research based lggal DNS server. This large-scale examination of DNS
smaller samples of potentially non-representative data. WEWs us to characterize the current DNS traffic patterns
attack the problem of scale by representing a large amoithterms of the participating agents (clients, and local and
of Internet data, gathered from peering links, in a coguthoritative DNS servers) and their interaction. It also al-
densed graph format and using efficient software tools!@Vs us to examine potential applications of network aware
answer complex questions swiftly. Although the work délustering [4].

scribed in this paper deals with a specific protocol (DNS), Our specific goals are as follows:

we believe our approach will work just as well for othey categorize the set of IP addresses seen in the traces with
protocols in the construction and answering of a broad $f§h probability into clients, local DNS servers, authorita-
of domain-specific questions. tive DNS servers, and root servers.

We focus on DNS in this paper primarily due to the ex- validate the correctness of the categorization via a va-
plosive growth of Web traffic which has led to an correiety of techniques and use the categorization in applica-
sponding increase in the number of DNS transactions. Ifigns to demonstrate its usefulness. Among the applica-
typical Web transaction, a Web client (such as a browsgons considered are identifying anomalous hosts that may

have been compromised or were targets of attacks, using

The authors are with AT&T Labs—Research, Florham Park, NJ, US . . .
emailfchuck, erg, bala, spatsgi@research.att.com Contact authorﬁ‘|e list of SUSpeCted local DNS servers in CDN appllca

Balachander Krishnamurthy, fax: 973-360-8077, 180 Park Avenqé(?nsv and identifying a lower bound of DNS servers found
Florham Park, NJ 07932 in busy clusters.

I. INTRODUCTION
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+ Be able to handle large data sets with the capability thfe necessary work and return the result. Positive and neg-

adding new data sets requiring only incremental work. ative caching with a time to live (TTL) value are routinely

+ Automate and streamline the process so that it can @mployed by DNS servers. The TTL indicates how long

repeated at other sites for different applications. the mapping is valid.

Section Il presents a brief introduction to DNS. Sec-

tion Il presents our experimental methodology, discusses I1l. M ETHODOLOGY

the various data elements in our experiment, and conver-

sion of thenetflowdata into graph form. The properties Our experimental methodology consists of the follow-

of the resulting graph are examined in Section IV. THBY Steps:

characterization of IP addresses gathered is discussed.ifExtract relevant IP addresses involved in DNS requests

Section V. Section VI discusses implementation issues agd responses from flow records obtained from the AT&T

sociated with the graph representation. The results of d#ickbone peering links, and aggregate the data over a pe-

large data gathering experiment is presented in Section ¥itid of time.

and Section VIII discusses applications of the categoriza- Form graphs whose nodes represent IP hosts and whose

tion. We conclude with a look at other applications aneldges represent DNS transactions between the hosts.

improvements to our implementation and analysis tecBpecifically the edges are directed, with the head of the

nique. edge representing a host running a DNS server on port 53

either receiving a request or responding to a request. We

Il. BRIEF INTRODUCTION TODNS assume that the tail of the edge represents the IP address

Hostnames on the Internet are translated into IP dhat sent a query or a transfer, and/or received a response.
dresses and IP addresses back into hostnames via the\¥@-generate two graphs: one representing communication
main Name System (DNS). DNS is a database distributeder TCP and another representing UDP traffic. Outliers
across a set of servers that handle name and address reén@ng nodes and edges that exhibit certain characteris-
tion on a hierarchical basis. The topology of the DNS narfics (e.g., unexpectedly high outdegree but with low edge
ing scheme consists of a collection of top-level domaiti¢eights) are identified so that they can be examined fur-
(such ascom, .edu , and.dz ) below the root of a hier- ther. Such examination currently requires going back to
archy, organized into separately administered zones (etge flow data to extract additional information. The data
att.com ). The zones register the names and IP addresie8lso filtered to remove illegal/reserved addresses (e.g.,
of a set of authoritative DNS servers with the root servef$X.x.x and 10.x.x.x addresses). Once outliers and ille-
Client requests for resolving names are sent by a resolgéf addresses are removed, the merged TCP-UDP graph is
library to a local DNS server with a cache. A typical DN@nalyzed to generate candidate sets of clients, local DNS
transaction consists of request and response sent over $BFers, and authoritative DNS servers.
with the client using a non-privileged port and the DN8. Iteratively increase the probability of proper categoriza-
server running on port 53. TCP is used when the UDP &en by performing additional tests specific to each can-
tempt fails, either because the data was too large to fit ifligate set. This consists of using attributes like fan-in,
datagram or there is a need to send multiple quériites fan-out, indegree and outdegree of nodes, as well as edge
often have more than one local DNS server. A cache fafeights. Additionally, external data sets that have author-
ure results in the query being forwarded either to the rdéative information are used to verify our categorization.
server or a domain server (if partial information is availSince the complete topology of DNS is not known even
able) which returns an authoritative DNS server capablewhen one has administrative access [5], a variety of heuris-
answering the query. DNS zone transfers are requiredtigs have to be used. We also actively probe selected sub-
replicate and synchronize copies of the zones between $g&s of the DNS hosts identified for verification. Once vari-
primary and secondary DNS servers; such transfers carPbié nodes are identified as correctly categorized, their fan-
a full copy or incremental. Zone transfers are carried oiitand fan-out set is generated to improve the accuracy of
over TCP since zone transfer data is typically larger th@ther categorizations.
what a UDP datagram can hold and it is important that tde Once the set of clients, local DNS servers, and author-
information be sent reliably. A DNS query may proceeidative DNS servers have been identified with high prob-

iteratively or recursively, where the queried server will dability, they can be examined selectively in conjunction

with other data sets (such as Web server logs).
YInthebind version of the resolver, the flag RESSEVC is used to

force the query to be sent over TCP. If the flag REBAYOPEN is also Fig_ur_e 1 shows the various steps involved in our data
specified, the resolver will keep the connection open between requeagquisition, transformation, and representation in a graph.
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Fig. 1. Steps in convertingetflowdata into a graph

In the rest of this section we discuss the data gath®NS traffic characteristics, it has several limitations. First,
ing and the transformation steps involved in generating diie records are aggregated: the flow abstraction provided

graphs. by netflowobscures details of the intra-record exchanges.
A source and destination IP address may have exchanged
A. Data acquisition multiple messages. The number of bytes exchanged and

We have been gathering router-level data [6] usifige count of packets may provide hints as to the numbe_r
Cisco's netflow[7] tool. Netflow enables accumulation®! €xchanged messages. A single exchange can consist

of statistics regarding traffic flows. Our data is gatheréﬁ multiple packets and a large number' Of, byte§. Several
at a collection of Internet Gateway Routers that ternﬁ’hort gxchanges may have occurred within a single TIOW'
nate access links in AT&T's backbone network. The flow¥Or€ important, some Very long flows may span multiple
areunidirectionalsequences of packets between a particﬁa—cords' Second, the Iocf':mon where we capture data does
lar source and destination device communicating over &t guarantee that we will see the complete flow of traf-
same protocol. The most common set of fields recordli € We might see requests bu_t nqt responses and vice-
are the source and destination IP addresses, source %iga- The use of hot potato routing implies that response
destination port numbers, the protocol type, and informBaCKets may exit via a closer egress point and not use the
tion about the type of service and input interface. A recorg" ™€ Path as incoming packets. Third, source and destina-
may be dumped byetflowwhen one of a variety of condi- fion ports ina rgcord could both be 5_3 since some egrller
tions are met: there was no activity between endpoints #§#SIons of thebind - software used privileged ports with

a period of time, a long period of continuous activity hat'® SENder also using port 53 for the query. The newer ver-
oceurred. or the router’s cache is full. sions ofbind use unprivileged ports that are larger than

The data gathered in our study consist of traffic as shoﬁbﬂze" _
in Table I. Note that only a portion of the data is actually APart from the flow data, we obtained several external

used due to the reasons explained below. We aggredgigéasets that play an important role in our analysis:

data on the default DNS port (53, source or destination) @n A set of known root server$. ROOT-SERVERS.net )

flows involving either TCP or UDP traffic. as well as authoritative servers faret , .com, .org ,
While netflow provides us with valuable insight into.mil , and.edu ).
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TABLE |
DNS TRAFFIC EXAMINED

Protocol | Source | Destination Use

port port

53 53 Queries between servers and replies
UDP any 53 Queries from clients/LDs/ADs

53 any Replies to above

any 53 Queries from clients/LDs/ADs expecting
TCP long replies, zone transfers

53 any Replies to above

2. The collection of NS records in several of the top levelnce an IP address may be a target of requests at port 53
generic domains as well as several national domains. and may generate requests at a port number other than 53.
3. Arecent large portal Web site’s server log. Second, although an edge IP4HP2 may be present in

4. Asetof BGP snapshots gathered recently from a varigtye graph, this does not imply that the host represented
of places. by IP1 initiated the DNS exchange. We may simply be
We will explain the use of these external data sets in relgzeing the response from IP2 to IP1 without the request
vant sections. being captured byetflow This is an artifact of the fact
that we do not see the complete DNS traffic since we are
gathering data only on a subset of peering links.

We represent the data as a graph whose nodes are th&ong with the edges, we store the weight of the edge
IP addresses and edges are requests or responses betjieéfiber of packets involved in the exchange). The infor-
nodes. Anetflowrecord can include multiple exchangesation about the number of packets on an edge is critical
between a source and destination IP address. A typilooking for outliers in the traffic. For example, a full
DNS request-response exchange at a high level consists@P flow is often at least 6 packets long and if we only see
a host with IP address IP1 sending a UDP DNS packgie direction of the traffic we should see at least 3 packets.
from a randomly assigned port to port 53 on a DNS servany TCP flow with a packet count less than 3 is indicative
host with IP address IP2. IP2 responds to the requestdfyan anomaly. In addition the TCP flag information can
sending a UDP DNS packet to the requestor’s port on hggt used to identify if outlier TCP flows occur during the

B. Convertingnetflowdata to graph representation

IP1. early part of the handshake.
A message exchange at thetflowlevel is represented
in the high-level DNS graph by an edge whose head points IV. EXAMINING GRAPH PROPERTIES

to the IP address associated with port 53. In other words,
the edge always points from the IP address generating th&Nce We have the TCP and UDP graphs, we can exam-

DNS request to the IP address servicing the request. A a variety of graph properties. The representation of the
cordingly, there are two cases: traffic data in a graph form was done with two goals in

1. IP1->IP2: netflowrecords either a DNS request meghind:

sage being sent from IP1 to IP2 and/or a DNS reply beifig/Ve can look for presence or absence of specific patterns

sent from IP2 to IP1. The port number associated with |IRP2sed on the semantics of the traffic being examined.

is 53. + We can examine if interesting attributes are present in

2. IP1<>IP2: netflowrecorded a DNS message whos#e data based on a generic graph analysis and then deter-

source and destination packets are both 53. This occlii&e if they have useful semantic implications.

with older implementations of theind software (prior  Among the attributes of the nodes of interest are its in-

to version 8.1) which send queries on port 53. A bdegree and outdegree. Indegree of a node is the number

directional edge could imply that either IP1 or IP2 are DN& edges for which it is the head node and outdegree is the

servers; thus such edges are colored to distinguish theamber of edges for which it is the tail node. For exam-

from normal directed edges. ple, IP addresses that only send DNS requests will have a
There are two cases with the edge construction processnzero outdegree but zero indegree. Recall that our as-

First, the graphs may have both IP4HP2 and IP&>IP2 sumption is that an edge in our graph has the requester as
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the tail and the responder as the head (whose port numbdn any of the above cases, we want to isolate the nodes
is guaranteed to be 53). and edges of such hosts and remove them from the TCP
Among the attributes of edges, we check for bgraph. The set of nodes can be compared withnitie
directional edges. In addition, the TCP and UDP grapHew data (by examining the TCP fields of those packets)
have edges in common since some nodes may commuaisee if the host is a target of attack, or falls in the zombie,
cate with each other using both protocols. Such edges ta@asurement, or misconfigured category.
be identified once the graphs have been constructed. Similarly, examining the prefixes of the IP addresses
Among graph attributes, we examine the number of corgveals addresses such as 0.x.x.x, 10.x.x.x, 192.168.x.x,
nected components, the structure and directed depthasfwell as ones in the restricted range of 172.16.0.0 to
the components, and indegree and outdegree statistics1718.31.255.255. Such addresses are not valid addresses
some cases, a request over UDP may result in partial &nd have to be removed from the graph. The resulting UDP
formation, along with an error of the form “message truand TCP graphs are merged into a single graph for further
cated”, since the data did not fit in the packet. The queapalysis. The process graph shown in Figure 1 shows the
might then be repeated over TCP. We can examine nodegrged graph as the final step in the transformation of the
that repeatedly communicate using UDP and TCP by lookeluminousnetflowdata into a compact graph. All appli-
ing for common edges in the two graphs. cations (other than finding zombies and targeted machines)
Since data gathering operations are likely to include carried out by using the merged graph. From this stage
anomalous or erroneous input which could severely affeéit, thenetflowdata is no longer consulted.
inferences, we need to check the data for outliers. OnceSeveral bits of information are lost in the reduction of
thenetflowdata has been transformed into a graph, we caétflowdata to a graph format. Many of the fields are
examine the graph for presence of outliers and incorréwt of interest to this application: the next hop router’s
data elements and separate them. IP address; information about the input/output interface;
One outlier characteristic we examined was the outd@utonomous system and prefix mask bits; the accumulated
gree of nodes in the TCP graph. Recall that TCP is usegof TCP flags. In addition, we lose all temporal informa-
for either zone transfers or for sending queries when UDiPn as to when the message exchanges occurred or how
request results in a message truncated response. Sincgany occurred during a specific time interval. Since we
most any TCP flow involves a half dozen packets, a TGRat information from all router locations equally, we do
flow with fewer than 6 packets is an anomaly. Due to tHot distinguish between the records contributed by differ-
use of hot potato routing on our backbone links, howevént routers. When an edge is added to the graph we do
we may see only one direction of the flow. Thus, if waot record if it was added because there was a request, re-
see less than three packets on a TCP flow, it is an indiégonse, or both.
tor of an anomalous flow. Edges with lower than expected
packet counts could be due to errorsgtflowor because
of missed packets. A primary goal of gathering DNS traffic is identifying
If we found a very large number of edges with a shortetients, local DNS servers, authoritative DNS servers, and
than expected TCP packet count and the same nodedntliers. In this section we discuss our attempts at char-
volved as initiator or recipient of communication, thaacterizing the set of addresses seen in the traffic flow. We
would be more significant. Such nodes (addresses) coslwuld note that some categories might overlap: several
be viewed as anomalous for several reasons: authoritative DNS servers are also configured to serve as
1. Machines that have been compromised. The initiatorlefal DNS servers. Gleaning definitive information about
communication might be a machine being used to propech configuration issues requires information that is not
the network for security weakness. If such a host has begaiblicly available. Similarly, the location of data gather-
compromised in order to launch an attack, then such hokstg will have a strong impact on the distribution of clients,
are known agombies local DNS servers, and authoritative DNS servers.
2. Machines that are targets of attacks involving IP spoof-
ing. The recipient of communication with a large numbdp- Local DNS servers
of low TCP packet counts might be the target of an attack.We begin by attempting to locate local DNS servers.
3. Machines involved in measurements. For example, ddie properties associated with local DNS servers are as
casionally a machine may use port 53 on TCP to obtdwllows:
RTT measurements. + When a local DNS server starts, it first uses a pre-
4. Machines that have been misconfigured. configured set of root server hints to contact a currently

V. CHARACTERIZATION OF ADDRESSES
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Merged graph Root/Top-level AD

AD: authoritative DNS server
LD: local DNS server
sLD: suspected local DNS server
SAD: suspected authoritative DNS server
sClient: suspected clients
kLD: known local DNS server
KAD: known authoritative DNS server
Blue ovals are intermediate output
Black boxes represent external data sets
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Fig. 2. Using graph to characterize addresses

valid root server in order to obtain a fresh list of roosuspected local DNS server is indeed a local DNS server,
servers. This list is used, on demand, to obtain the agle randig against a large subset of the suspected DNS
dresses of authoritative servers for generic top level dgervers. Any server that replied is by definition a local
mains such axom, .org , and.net . DNS server. This set is labeled kLD or known Local DNS
+ A local DNS server serves as a caching local server fegrvers.

many clients and is thus expected to receive a lot of re-

quests from the set of clients it is responsible for. B. Authoritative DNS servers

t A local DNS server contacts authoritative DNS servers o authoritative DNS server is authoritative for a set of

to obtain an answer on a cache miss. domains and can give the proper up-to-date response for
We use each of the above properties of local DN@Ieries. Authoritative DNS servers (AD) receive many re-
servers to help identify them in our graph. First wguests but do not generate any queries other than query to
examine the set of 31 known root servers (A.ROOThe root server at startup time. An AD responds to requests
SERVERS.net ... M.ROOT-SERVERS.net, as well as aiom local DNS servers.
thoritative servers fornet , .com, .org , .mil , and By examining nodes whose outdegree is Zeaad who
.edu ) to see if any of them are the head node of an edgeceive requests from local DNS servers, we identify sus-
The tail nodes of each of these edges are candidates to pected authoritative DNS servers. Thus, the heads of edges
local DNS server. We end up with a list of suspected locahose tails are suspected local DNS servers are candidates
DNS servers (sLD in Figure 2). for authoritative DNS servers. However, in order to gen-
A node with a small indegree is less likely to be a loc&rate the set of suspected authoritative DNS servers, we
DNS server assuming we can see all the traffic from tfigst remove edges in the merged graph that are between
netflowdata. With increasing probability, the higher th&P addresses that both used port 53 to speak to each other.
indegree of a node, the more likely it is a local DNS servekraffic between two hosts both of which use port 53 im-
However, given the potential of a local DNS server also bBlies that the tail or the head of the edge could be a local
ing configured as an authoritative DNS server, high IndezIt is possible that during our data gathering interval an authoritative

gree alone C_ioes not uniqL.Jer identify alocal DNS S€IV&Erver was rebooted and thus might send a request to the root server
Since there is no automatic way to infer from our data if@on startup, but that is a relatively remote possibility.
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DNS server. Including such edges in the graph would end-ind neighbors of a node
up drawing a lot of clients into the suspected authoritatiygus the auxiliary tasks of merging graphs together and
DNS server collection. splitting them apart. These are all basically simple algo-
We use an external data set available to us to verify sofi@ms, each requiring about 100 lines of code, and with
of the authoritative DNS servers. This data set consistsg@fmplexity at wors©(n log n). Most of the tasks differ in
the zone files of top level generic domainsdu , .com, only a few lines of code. For the data sizes we are dealing
.net , ...) as well as several country domains. Since thigth (cf. Table Il), merging data files to create the merged
list consists of known authoritative DNS servers we cafCP graph takes about 340 seconds; deriving the zombie
verify a fraction of suspected authoritative DNS servensodes takes about 13 seconds; stripping zombies and ille-
However, there are many authoritative DNS servers whaga&l nodes to create the reduced TCP graph takes around
information is not registered with the top level generic d®1 seconds; stripping and merging data files to create the
mains. For example, over 230 country domain servers ma&duced UDP graph uses about 10,115 seconds; merging
hold the zone files of several authoritative DNS servers.the UDP and TCP graphs takes 1364 seconds; and, finally,
_ removing bidirectional edges from the merged graph re-
C. Clients quires 108 seconds. A typical neighbor query might take
Clients are generally expected to be the largest fractid85 seconds. Basically linear tasks, like this last, are dom-
of the IP addresses. Inside an administrative domain whéarated by the time to read the graph. All times reported are
netflowdata is gathered, one may have a reasonable idesed on a 28-processor, 333 MHz Sun SPARC Ultra En-
of prefixes owned by the organization against which therprise 1000, with 20,480 Mbytes of main memory. These
suspected list of client IP addresses can be checked. reflect total CPU times. Some of the tasks can be done in
Clients have a modest outdegree since they typicafiarallel, thus significantly reducing wall clock time.
only have two or three local DNS servers configured. Their The structure of all the programs is identical: read a col-
communication on port 53 is restricted to talking to thedection of graphs; for each edge, compute and store some
servers. Direct communication to the root DNS servers \iiormation; print the stored information. This simplicity
tools like dig may complicate our assumptions but suds helpful, in that it makes it easy to tailor the data struc-
traffic is generally a very small fraction originating frontures of each program to the task at hand. Thus, if we were
only a few clients. computing outdegree information, and know that there are
Note that, as in the case with generating suspected ag-duplicate edges in the input graphs, we only need to
thoritative DNS servers, we remove edges whose pamtintain a set of nodes, and can ignore the edge structure.
numbers on both sides are 53. Clients rarely run usi@ven the size of the graphs involved, minimizing memory
privileged ports (less than 1023). Also, we do not know ifsage significantly improves performance.
the tail or the head was the host on which a DNS serverwe use two formats for the external storage of
ran. Since there may be some communication betweendgaphs, both edge-oriented. There is a text format, in
cal DNS servers themselves, we shrink the list of IP adthich each edge is represented as a line of the form

dresses that talk to suspected local DNS servers (sLD)49¥.X. X.X->X.X.X.X <packet count> ", For bi-
the list of known local DNS servers (kLD) and generaigirectional edges, we uses” rather than > . This for-
our list of suspected clients. mat is used for the intermediate data derived fromrige

flow database, and when humans need to view the graphs.
Principally, though, we employ a binary format, with each
For the class of problems considered, we require a siagge represented by 12 bytes: 4 bytes each for the 32 bits
ple type of directed multigraph representation. Grapteeded for the IP address of the tail and head, followed
nodes can be identified with IP addresses with no adbiy 4 bytes for the packet count. In addition, the high-bit
tional attributes; edges consist of a directed pair of node$ the packet count is set to indicate a bi-directional edge.
with an aggregate packet count attribute. Also, as not&able Il gives a feel for the file sizes involved, and shows
above, edges fall into two categories: ordinary and bhe obvious shrinkage obtained by moving from the text to
directional. the binary format. Some of the larger graphs are actually
There are four principal tasks involved in our analysispartitioned into several files. This reduces memory usage,
+ Compute the outdegree and associated packet countaittews for parallelism, and can be used to limit the domain
formation of a node of a search.
+ Remove all edges containing certain nodes All the tools use an underlying library for reading and
+ Remove bi-directional edges writing the graphs in their several formats. Both formats

VI. GRAPH IMPLEMENTATION ISSUES
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TABLE Il outdegree was greater than 100K and whose outbound
PROGRESSIVE GRAPH SIZES edges had packet counts less than three for at least 90%
of the time. These anomalous addresses contain suspected
Edge count]| Kilobytes zombies and hacked IP addresses.

Daily UDP data 257,339,100 7,832,896 We extracted the fulihetflow records for packets in
Daily TCP data 22,435,114 691,057 Wwhich the anomalous IP address appeared in the source
Merged UDP graph 125,253,867 1,503,046/ or destination field and examined the TCP flags field. The
Merged TCP graph 21,949,654 263,395 TCP flags field in anetflowrecord is the bitwiser of all
Reduced UDP graph 125,204,439 1,502,453 TCP flag fields of all TCP packets counted in that partic-
Reduced TCP graph 7.842576] 94,110| ularnetflowrecord. For example, a TCP flag field entry

Merged TCP+UDP graph 132,849,091 1,594,189 of “RST, SYN” for two TCP packets indicates that at least
Merged TCP+UDP graph 76,224,714 914,694 ©ne of the TCP packets had the RST bit set and at least one

without 53-53 edges of them had the SYN bit set.
Table IV shows the result of this investigation for
two anomalous IP addresses (actual addresses have been

are self-identifying. Thus, a program can give the 1/O jmasked). IP1is a.host which sent at least 1,021,268.SYN
brary a list of file names and the library will provide thdeguests and received at least 949,839 datagrams with the

correct reader for each file. This library is about 300 IinggST andjor ACK bit set. Since not a single datagrgm with
of C code, and includes a predicate for identifying legal Iﬁbe _SYNhACKhb't set was sent to “:;1’ we qetermlnelthat
addresses. Set operations, when needed, are implemeliiddS & host that used TCP port 53 for probing via at least

using a general-purpose dictionary library [8]. 1'021’_268 SYN requests.
To use this approach for an on-going analysis, the tools'P2 is @ host that our records show contacted 2,556,908

and file formats can be used incrementally, without regi_stinct IP addresslc(as usingh_TrC]:P Iport 53. IP2 ;ent
eriving the graphs anew from tmetflowdata. New edges 6,170,090 SYN packets to which at least some machines

can be added to the basic TCP graph, and a new Iistr8§ponded with a packet which has the SYN bit set. Since
zombies generated. The subset of new edges bothWst do not see all traffic for a particular IP address we do
whose nodes are valid can then be merged into the vé}(i)-t knovxr/Tthheexactnumt_)er of TCP replies with the SYN

ous reduced graphs. In addition, if any new zombies :ﬂg set which were received by IP2. However, we can give
identified, these associated edges can be stripped from3Ag/PPer bound of 3,989 of such packets recorded in our

graphs. The only case requiring more work would be if t%etflowdata. This is the total packet count of aktflow

changes remove the zombie status of a node, requiring "Eﬂ(éords sent to IP2, for which the bitwise of the TCP

re-introduction of all its associated edges. flags contains the SYN bit. _
All other anomalous IP addresses we isolated before

VIlI. RESULTS creating the merged graph were similar in that they origi-

nated a large volume of traffic but received only a very few

We now present the result of our data gathering apghjies. Therefore, we can conclude that all suspect IPs we
analysis. A total of 20 days worth eketflowdata (spread jgp|ated were probing the network or were misconfigured.

over four contiguous periods of five days each in the courggne of the addresses were targets for a denial of service
of one year) was gathered resulting in over 1 terabyte gf, using IP spoofing.

data. From this data we extracted traffic on port 53 CON-1915 |P addresses were removed as illegal since they
sisting of nearly 7.5 billion packets of UDP traffic anq)egan with 0.x.x.x, 10.XXX, etc. In all, 6,793,678 IP
149 million packets of TCP. The resulting UDP graph haéjddresses and a corresponding 7,842,576 edges were re-
5.4 million nodt.as' and 125 million e(?iges while the TCPR oved as illegal in the TCP graph. The UDP graph with
graph had 19 million nodes and 22 million edges. Table lj|oq4| nodes (and corresponding edges) removed had 5.4
present.s the precise numbers. After being filtered for PAfllion nodes and 125 million edges. The TCP graph with
53 traffic and converted to a graph, over one terabyte fify5| nodes (and corresponding edges) removed had 6.8
raw netflowdata resulted in a graph of size 1.5 GB. million nodes and 7.8 million edges. A single suspected
zombie alone probed 5,153,666 different IP addresses.
Since this suspected zombie presumably did random prob-
We closely examined the raw TCRetflow data for ing, the ratio of DNS servers in that set is very small. Most
anomalous IP addresses. We identified 26 addresses whadskose 5 million nodes were removed when the suspected

A. Anomalous and illegal addresses
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TABLE Il
DNS GRAPH PROTOCOL BREAKDOWN

nodes edges packets
UDP raw 5,391,685| 125,253,867 7,520,127,483
Without 5,374,094| 125,204,439 7,506,734,902
illegal IPs
% Reduction 0.33 0.04 0.18
TCP raw 19,732,072| 21,949,654 149,220,358
Without illegal, | 6,793,678| 7,842,576] 124,327,321
anomalous IPs
% Reduction 66 64 17
TABLE IV TABLE V
ANOMALOUS ADDRESSES EXAMINED CHARACTERIZING ADDRESSES
Pkts with IP | Pkts with IP Suspected LDNS 564,077
insrc field | indst field SLDNS tested vialig 224,348
IP1 total 1,021,268 949,839 Known LDNS 58,527
SYN 1,021,268 0 Suspected Authoritative 2,919,455
RST ACK 0 949,839 SAD with outdegree=0 2,717,025
IP2 total 6,177,723 33,891 Known AD 217,721
SYN 6,170,090 1 Suspected Client 3,178,981
SYN ACK 46 214 SClient with Known LDNS removed 3,129,037
ACK 121 343 SClient with Known LDNS removed
FIN SYN ACK 6,906 3,526 and with indeg=0, outdeg 4 2,298,988
RST 144 341
RST ACK 5 29,110

Note that for IP2, the table does not show several infrequenﬁyl Characterizing local DNS servers

used bit settings such as FBYNjRST]ACK. By looking for the set of edges whose heads were in the

set of known top level authoritative servers or root servers,
we identified nearly half a million IP addresses as sus-
zombie was removed from the TCP graph. This explai@gcted local DNS servers (sLD in Figure 2). Checking
the dramatic percentage reduction in the TCP graph. ;g dig nearly half of this suspected set led to confirming
The merged graph had 11.7 million nodes and 132agound 60 thousand, about one in four. These confirmed
million edges. The number of bi-directional edges in thgddresses are the known local DNS servers (KLD). Local
merged graph was 56,624,377, involving 1,257,983 nod&3\S servers may refuse to responddig if the request
came from a set of clients it does not recognize. Thus the
absence of response does not imply that the server is not
B. Characterizing addresses a local DNS server. As a way of cross checking, we se-
lected four sets of 5,000 addresses at random (for a total of

Once the merged graph has been obtained we usegoa00) from the hitherto untested set and ran
variety of graph queries to partition the set of addresses

into clients, local DNS servers, authoritative DNS servergig @%s A.ROOT-SERVERS.NET

Since there is no way to categorize the addresses directly,

we begin with correspondinguspectedets and with in- where %s represents the IP address of the server tested. All
creasing confidence group them into treownsets. Ta- servers which returned an A record were marked as known
ble V presents the actual humbers extracted from docal DNS servers. In each of the four sets, nearly 1 in 4
merged graph. IP address was confirmed as known local DNS servers.
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Fig. 3. Outdegree distribution of suspected clients
B.2 Characterizing authoritative DNS servers ure 3 shows the distribution of outdegrees of the suspected

. . ients. As can be seen, a vast majority has a low outdegree
Removing 56,624,377 edges with both port numbers glé»  av Jorty! woutdeg

- as expected but there are several outliers. Clients whose
from the merged graph and examining the set of edges

. A i - Utdegrees are greater or equal to 4 are likely to be local
whose tails are in the sLD set yields 2.9 million address g g d y
. S servers that talked to another local DNS server, or
that form our suspected authoritative DNS server set (s

I ; o achines that are configured to run as local DNS servers
in Figure 2). Since we do not expect authoritative DNg‘ g .
and have users generating DNS queries, or hosts that are

servers to make requests except during startup, we eXpeCt. din probing activity
that a vast majority of the ADs to have an outdegree 6} '
0. With this stipulation, we have 2.7 million suspected a@. Other graph analysis

thoritative DNS servers. We extracted 485,661 addresse

from the zone files ofarpa , .com , .edu , .net , .org %eades the basic analysis, we also did a preliminary ex-

and.root , and 42,501 addresses from several count'?lor'f’ltIorl of.other properties of the graphs at hand, such as
egree statistics, connected components and graph struc-

domains. 217,721 addresses (over 40%) of the merqe - . ) L
o . . ure. Two characteristics are obvious. One is the similarity
set of 527,273 authoritative DNS servers (with duplicates . .
large random graphs, in which there are many connected

removed) were found in our suspected authoritative DI\E% . -
server list. components, most small with the numbers trailing off as

the size of the components increase, followed then by one

In the intersection of suspected local DNS serve|rs “ N ..
1{(ge monster” component containing most of the graph.
e

and suspected authoritative DNS servers we found N€3Ne other characteristic is, not surprising, the prevalence
150,000 servers that are configured to support both roles ’ P 9 b

of fan-like structures among the small components.

B.3 Characterizing DNS clients VIIl. A PPLICATIONS

Removing 56,624,377 edges with both port numbers 530nce we have categorized the IP addresses, we can ex-
from the merged graph and examining the set of edgaere a variety of applications that can be built on top of
whose head are in the sLD yielded nearly 3.2 million adhe lists. The identification of suspected local DNS servers
dresses. Most clients using DNS are configured to usene is extremely valuable in the context of Content Dis-
one to three local DNS servers and nearly 73% of the stisbution Networks (CDNs). Most CDNs base their redi-
pected clients (with known local DNS servers removed@ction decision on the location of the local DNS server of
have an outdegree less than 4 and an indegree of 0. Rigdient (and not based on the location of the client). This
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TABLE VI the suspected (known) local DNS servers are found in the
WEB/DNS DATA EXAMINED FOR CLUSTERING set of busy clusters of the Web clients. Each match indi-
APPLICATION cates the presence of at least one suspected (known) DNS

server in the busy clusters. Table VI presents the raw num-

Server | Suspected Known bers of the cluster experiment. By plotting the percentage

log LDNS DNS of matches found in increasing fractions of the set of busy

IP addresses 7,652,670 564,077 | 58,527 clusters of Web clients we can get a relative measure of
# of Clusters 114,928 69,923 | 20,736 busy clusters that include a suspected (known) local DNS
# of busy clusters 43,164 - - server. Figure 4 shows the relative match between both the

suspected and known DNS server clusters against clusters
of the Web clients. This is a lower bound on the number

requires CDNs to map the location of such servers with@ local DNS servers present in these clusters.
the Internet. Knowing a superset of local DNS servers in The bump in known local DNS servers graph is not
the Internet greatly reduces the number of IP addresg&gsent in the suspected local DNS servers. We surmise
which have to be mapped. Using our data it seems S[hat the top few of the busiest clusters are Ilkely to have
ficient to precisely map 564,077 IP addresses, in contrR&xies or spiders (which typically generate a lot more re-
to all IP addresses present in the Internet. guests than ordinary clients). Such servers often also serve
One application is dynamically choosing the be&s local DNS servers and are typically configured to not re-
local DNS server. Currently a client selects a lgsPond to probe queries from outside. The fact thatitte
cal DNS server either by using a static file (typicallflow data sees a lot of DNS servers belonging to the busy
Jetc/resolv.conf ) or by using a DHCP (Dynamic clusters is understandable. Clients belonging to busy clus-
Host Configuration Protocol) server. Although DHCP prders access a wide variety of servers and at least some of
vides a way to dynamically choose a set of local DNeir DNS traffic will traverse the backbone and are likely
servers, it typically treats all servers in the selected detbe seen in ounetflowdata. The steady decline in num-
equally. On alarge network with a diverse set of local DNIBer of local DNS servers that we see in the less busy clus-
servers this may not be the right action. A mechanisi@'s is also not surprising: their clients” Web traffic to the
that can help clients choose an appropriate DNS seryegrtal site is low and thus their DNS requests are less likely
based on a set of criteria, would be beneficial. Helpiryerall to traverse our backbone.
clients choose a local DNS server close in terms of net-
work proximity is obviously beneficial. Clients often make
DNS queries followed by other actions, such as fetching aWe have presented a methodology of large scale Internet
Web page. The administrator of the client system coubdeasurement and analysis that greatly benefits from effi-
use information gathered to make the proper choice of ldent processing software, a graph representation, and a set
cal DNS server and thus speed up client requests. of generic library routines that helps query the graph for
We use the network aware clustering technique outlinedveral DNS-specific properties. Our goals were to con-
in [4] to cluster the set of IP addresses representing cliemtst the large amount of data obtained by tiedflowtool
in a large portal Web site server log. Atotal of 104,018,140 aterse graphical representation that serves as a base for a
requests were received at the Web site from over 7.6 mikriety of applications. The applications, such as locating
lion unique IP addresses. The IP addresses were clustdoed! and authoritative DNS servers, can be constructed ef-
using 441,230 unique BGP prefixes gathered by mergifigently. Answers to a variety of questions about the struc-
14 separate routing table snapshots in May 2001. We éxre of the graph, and properties of nodes and edges, that
amine onlybusyclusters: clusters that were responsibleave domain-specific meaning can be obtained quickly.
for a reasonable fraction of the requests to the Web sit#e use simple attributes of nodes, like in- and outdegree,
By sorting the number of requests emanating from eattheasily characterize the set of IP addresses. There is little
cluster and selecting the top few clusters we end up wittnaed to resort to the much larger and somewhat unwieldy
large fraction (70%) of the overall number of requests. #armat of the output ofietflow The reduction in size of the
total of 43,164 busy clusters generated over 72.8 milliatata without loss of significant information and the abil-
requests. ity to mine the graph rapidly suggests that this paradigm
We then cluster the IP addresses in the suspected laafdiraffic mining might be useful for other network traffic
DNS server list (sLD) and the known local DNS server listatasets as well.
(kLD) separately. We examine how many of the clusters of With a high degree of probability we have characterized

IX. SUMMARY
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Fig. 4. Looking for DNS servers in busy clusters

the set of IP addresses involved in the flow to be one wfiderlying binary relation and some associated attributes,
a DNS client, local DNS server, authoritative DNS serveand, by its nature, this is often true of network data, then
or an outlier such as a suspected zombie. Using availabtee can extract the associated graph, reducing the data
tools (such aslig) or external datasets (such as zone filesze, and then apply the appropriate graph operations. In
of top level generic domains) we have verified that otine case ohetflowdata, given the fixed data schema and
characterization is correct. Using Web server logs froomiformity of the analysis tasks, it should be possible to
a portal site and the network aware clustering techniqumrameterize the process for other analyses. Thus, one
we have been able to place local DNS servers in busy clggould be able to describe a desired model, requiring cer-
ters, with applications in deployment of content distribuain data fields in aetflowrecord, and the actions on the
tion networks. model, and have the extraction and analysis tools gener-
Our entire process is automated with scripts used to ca@ted semi-automatically.
vert thenetflowdata to graphs and a tailored graph library In future work, we plan to locate invalid delegates (also
software to efficiently mine the graph. A variety of otheknown as lame delegates in DNS parlance), machines that
applications are being constructed using the graph. either do not exist or have been improperly registered as an
At present, the size of the graphs, and the characteastthoritative DNS server for a domain. Currently, there is
tics of the problems and the machines we are using makeknown technique to automatically identify these. How-
our simple approach feasible. As the graphs grow, othexer, the graph representation will help generate a nar-
tactics will become necessary. Some are simple, suchrawer set of suspected lame delegates when we use the
making use of 64-bit hardware, using the monotonic aséquencing of request information.
uniform memory allocation pattern to avoid unnecessary
space overhead, or reducing the number of intermediate X. ACKNOWLEDGMENTS
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