
ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

Characterizing Large DNS Traces Using Graphs
Charles D. Cranor, Emden Gansner, Balachander Krishnamurthy, Oliver Spatscheck

Abstract—
The increasing deployment of overlay networks that rely

on DNS tricks has led to added interest in examining DNS
traffic. In this paper we report on a characterization of DNS
traffic gathered over a period of several weeks at Internet
Gateway Routers (IGRs) in the AT&T Common Backbone.
The characterization is carried out using several novel tech-
niques to identify clients, local DNS servers, and authorita-
tive DNS servers. Our techniques include passive and active
measurements, graph-based analysis, examination of out-
liers, and explicit checks against data obtained from sev-
eral external sources. Our contribution is the reduction of
a very large data set (over 1 terabyte of raw data) into a
significantly smaller representation that is ideally suited for
answering protocol-specific semantic queries quickly. After
categorizing the addresses, we use the network aware clus-
tering technique to group local DNS servers. By juxtaposing
the DNS server clusters with clusters formed by Web clients
obtained from a large portal Web site, we determine the dis-
tribution of identified DNS servers in busy clusters. A va-
riety of applications are examined, ranging from identifying
suspected zombies to helping Content Distribution Networks
in mapping location of DNS servers.

I. I NTRODUCTION

Among the primary difficulties of carrying out Internet
measurements are issues of scale and the representation
of large data sets in a format that is suitable for domain-
specific queries that can be answered rapidly. Often the
scale issue inhibits work, leading to research based on
smaller samples of potentially non-representative data. We
attack the problem of scale by representing a large amount
of Internet data, gathered from peering links, in a con-
densed graph format and using efficient software tools to
answer complex questions swiftly. Although the work de-
scribed in this paper deals with a specific protocol (DNS),
we believe our approach will work just as well for other
protocols in the construction and answering of a broad set
of domain-specific questions.

We focus on DNS in this paper primarily due to the ex-
plosive growth of Web traffic which has led to an corre-
sponding increase in the number of DNS transactions. In a
typical Web transaction, a Web client (such as a browser)

The authors are with AT&T Labs–Research, Florham Park, NJ, USA.
email:fchuck, erg, bala, spatschg@research.att.com Contact author:
Balachander Krishnamurthy, fax: 973-360-8077, 180 Park Avenue,
Florham Park, NJ 07932

attempts to obtain a resource identified by a Uniform Re-
source Locator (URL) by contacting the specified Web site
using the HyperText Transfer Protocol (HTTP [1]). Each
URL has a server component whose IP addresses has to
be determined by using a DNS lookup in order to set up
a transport layer connection on which the HTTP message
transfer occurs. For example, a Web request for the URL
http://www.example.com/index.html requires
resolution ofwww.example.com to an IP address.

Web traffic is asymmetric by nature—a large number of
requests are directed to a few thousand sites. This has re-
sulted in many busy sites offloading frequently requested
resources to Content Distribution Networks (CDNs). A
CDN is an overlay network that typically uses DNS-based
redirection [2] to allow users to fetch resources from
‘nearby’ caches. The widespread deployment of such
overlay networks has led to further increase in DNS traffic.

The increase in Web traffic and the introduction of
CDNs led us to seek a broader understanding of the nature
and use of the DNS protocol. There have not been many
significant measurement studies of DNS traffic in recent
research literature. The study described in [3] focuses on
the evaluation of the proximity of a small set of clients to
3807 local DNS servers. In contrast, we have been collect-
ing the network flow-level data of DNS traffic at multiple
Internet Gateway Routers (IGRs) in the AT&T Common
Backbone. In our study we identified 564,077 suspected
local DNS server. This large-scale examination of DNS
allows us to characterize the current DNS traffic patterns
in terms of the participating agents (clients, and local and
authoritative DNS servers) and their interaction. It also al-
lows us to examine potential applications of network aware
clustering [4].

Our specific goals are as follows:

† Categorize the set of IP addresses seen in the traces with
high probability into clients, local DNS servers, authorita-
tive DNS servers, and root servers.
† Validate the correctness of the categorization via a va-
riety of techniques and use the categorization in applica-
tions to demonstrate its usefulness. Among the applica-
tions considered are identifying anomalous hosts that may
have been compromised or were targets of attacks, using
the list of suspected local DNS servers in CDN applica-
tions, and identifying a lower bound of DNS servers found
in busy clusters.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

† Be able to handle large data sets with the capability of
adding new data sets requiring only incremental work.
† Automate and streamline the process so that it can be
repeated at other sites for different applications.

Section II presents a brief introduction to DNS. Sec-
tion III presents our experimental methodology, discusses
the various data elements in our experiment, and conver-
sion of thenetflowdata into graph form. The properties
of the resulting graph are examined in Section IV. The
characterization of IP addresses gathered is discussed in
Section V. Section VI discusses implementation issues as-
sociated with the graph representation. The results of our
large data gathering experiment is presented in Section VII
and Section VIII discusses applications of the categoriza-
tion. We conclude with a look at other applications and
improvements to our implementation and analysis tech-
nique.

II. B RIEF INTRODUCTION TODNS

Hostnames on the Internet are translated into IP ad-
dresses and IP addresses back into hostnames via the Do-
main Name System (DNS). DNS is a database distributed
across a set of servers that handle name and address resolu-
tion on a hierarchical basis. The topology of the DNS nam-
ing scheme consists of a collection of top-level domains
(such as.com , .edu , and.dz) below the root of a hier-
archy, organized into separately administered zones (e.g.,
att.com). The zones register the names and IP addresses
of a set of authoritative DNS servers with the root servers.
Client requests for resolving names are sent by a resolver
library to a local DNS server with a cache. A typical DNS
transaction consists of request and response sent over UDP
with the client using a non-privileged port and the DNS
server running on port 53. TCP is used when the UDP at-
tempt fails, either because the data was too large to fit in a
datagram or there is a need to send multiple queries1. Sites
often have more than one local DNS server. A cache fail-
ure results in the query being forwarded either to the root
server or a domain server (if partial information is avail-
able) which returns an authoritative DNS server capable of
answering the query. DNS zone transfers are required to
replicate and synchronize copies of the zones between the
primary and secondary DNS servers; such transfers can be
a full copy or incremental. Zone transfers are carried out
over TCP since zone transfer data is typically larger than
what a UDP datagram can hold and it is important that the
information be sent reliably. A DNS query may proceed
iteratively or recursively, where the queried server will do

1In thebind version of the resolver, the flag RESUSEVC is used to
force the query to be sent over TCP. If the flag RESSTAYOPEN is also
specified, the resolver will keep the connection open between requests.

the necessary work and return the result. Positive and neg-
ative caching with a time to live (TTL) value are routinely
employed by DNS servers. The TTL indicates how long
the mapping is valid.

III. M ETHODOLOGY

Our experimental methodology consists of the follow-
ing steps:

1. Extract relevant IP addresses involved in DNS requests
and responses from flow records obtained from the AT&T
backbone peering links, and aggregate the data over a pe-
riod of time.
2. Form graphs whose nodes represent IP hosts and whose
edges represent DNS transactions between the hosts.
Specifically the edges are directed, with the head of the
edge representing a host running a DNS server on port 53
either receiving a request or responding to a request. We
assume that the tail of the edge represents the IP address
that sent a query or a transfer, and/or received a response.
We generate two graphs: one representing communication
over TCP and another representing UDP traffic. Outliers
among nodes and edges that exhibit certain characteris-
tics (e.g., unexpectedly high outdegree but with low edge
weights) are identified so that they can be examined fur-
ther. Such examination currently requires going back to
the flow data to extract additional information. The data
is also filtered to remove illegal/reserved addresses (e.g.,
0.x.x.x and 10.x.x.x addresses). Once outliers and ille-
gal addresses are removed, the merged TCP-UDP graph is
analyzed to generate candidate sets of clients, local DNS
servers, and authoritative DNS servers.
3. Iteratively increase the probability of proper categoriza-
tion by performing additional tests specific to each can-
didate set. This consists of using attributes like fan-in,
fan-out, indegree and outdegree of nodes, as well as edge
weights. Additionally, external data sets that have author-
itative information are used to verify our categorization.
Since the complete topology of DNS is not known even
when one has administrative access [5], a variety of heuris-
tics have to be used. We also actively probe selected sub-
sets of the DNS hosts identified for verification. Once vari-
ous nodes are identified as correctly categorized, their fan-
in and fan-out set is generated to improve the accuracy of
other categorizations.
4. Once the set of clients, local DNS servers, and author-
itative DNS servers have been identified with high prob-
ability, they can be examined selectively in conjunction
with other data sets (such as Web server logs).

Figure 1 shows the various steps involved in our data
acquisition, transformation, and representation in a graph.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

Netflow Data

Select netflow records with
src or dst port 53 in chunks

separate zombies and hack targets

Invalid IP addresses

UDP graph without invalid/anomalous IPs TCP graph without invalid/anomalous IPs

UDP graph (pkt cnt for flows within graph) for each chunk TCP graph (pkt cnt for flows within graph) for each chunk

UDP graph (pkt cnt for flows within graph) TCP graph (pkt cnt for flows within graph)

Anomalous: (IP.outdegree > 100K && 90% of outedge’s pkt cnt < 3

Merged graph

Anomalous = Anomalous IP addresses
Blue ovals are intermediate output

Black boxes represent external data sets
Yellow implies further checks to be done

Fig. 1. Steps in convertingnetflowdata into a graph

In the rest of this section we discuss the data gather-
ing and the transformation steps involved in generating our
graphs.

A. Data acquisition

We have been gathering router-level data [6] using
Cisco’s netflow [7] tool. Netflow enables accumulation
of statistics regarding traffic flows. Our data is gathered
at a collection of Internet Gateway Routers that termi-
nate access links in AT&T’s backbone network. The flows
areunidirectionalsequences of packets between a particu-
lar source and destination device communicating over the
same protocol. The most common set of fields recorded
are the source and destination IP addresses, source and
destination port numbers, the protocol type, and informa-
tion about the type of service and input interface. A record
may be dumped bynetflowwhen one of a variety of condi-
tions are met: there was no activity between endpoints for
a period of time, a long period of continuous activity has
occurred, or the router’s cache is full.

The data gathered in our study consist of traffic as shown
in Table I. Note that only a portion of the data is actually
used due to the reasons explained below. We aggregate
data on the default DNS port (53, source or destination) on
flows involving either TCP or UDP traffic.

While netflow provides us with valuable insight into

DNS traffic characteristics, it has several limitations. First,
the records are aggregated: the flow abstraction provided
by netflowobscures details of the intra-record exchanges.
A source and destination IP address may have exchanged
multiple messages. The number of bytes exchanged and
the count of packets may provide hints as to the number
of exchanged messages. A single exchange can consist
of multiple packets and a large number of bytes. Several
short exchanges may have occurred within a single flow.
More important, some very long flows may span multiple
records. Second, the location where we capture data does
not guarantee that we will see the complete flow of traf-
fic; i.e., we might see requests but not responses and vice-
versa. The use of hot potato routing implies that response
packets may exit via a closer egress point and not use the
same path as incoming packets. Third, source and destina-
tion ports in a record could both be 53 since some earlier
versions of thebind software used privileged ports with
the sender also using port 53 for the query. The newer ver-
sions ofbind use unprivileged ports that are larger than
1023.

Apart from the flow data, we obtained several external
datasets that play an important role in our analysis:

1. A set of known root servers (*.ROOT-SERVERS.net)
as well as authoritative servers for.net , .com , .org ,
.mil , and.edu).

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

TABLE I
DNS TRAFFIC EXAMINED

Protocol Source Destination Use
port port
53 53 Queries between servers and replies

UDP any 53 Queries from clients/LDs/ADs
53 any Replies to above
any 53 Queries from clients/LDs/ADs expecting

TCP long replies, zone transfers
53 any Replies to above

2. The collection of NS records in several of the top level
generic domains as well as several national domains.
3. A recent large portal Web site’s server log.
4. A set of BGP snapshots gathered recently from a variety
of places.
We will explain the use of these external data sets in rele-
vant sections.

B. Convertingnetflowdata to graph representation

We represent the data as a graph whose nodes are the
IP addresses and edges are requests or responses between
nodes. Anetflowrecord can include multiple exchanges
between a source and destination IP address. A typical
DNS request-response exchange at a high level consists of
a host with IP address IP1 sending a UDP DNS packet
from a randomly assigned port to port 53 on a DNS server
host with IP address IP2. IP2 responds to the request by
sending a UDP DNS packet to the requestor’s port on host
IP1.

A message exchange at thenetflowlevel is represented
in the high-level DNS graph by an edge whose head points
to the IP address associated with port 53. In other words,
the edge always points from the IP address generating the
DNS request to the IP address servicing the request. Ac-
cordingly, there are two cases:
1. IP1–>IP2: netflowrecords either a DNS request mes-
sage being sent from IP1 to IP2 and/or a DNS reply being
sent from IP2 to IP1. The port number associated with IP2
is 53.
2. IP1<>IP2: netflow recorded a DNS message whose
source and destination packets are both 53. This occurs
with older implementations of thebind software (prior
to version 8.1) which send queries on port 53. A bi-
directional edge could imply that either IP1 or IP2 are DNS
servers; thus such edges are colored to distinguish them
from normal directed edges.

There are two cases with the edge construction process.
First, the graphs may have both IP1–>IP2 and IP1<>IP2

since an IP address may be a target of requests at port 53
and may generate requests at a port number other than 53.

Second, although an edge IP1–>IP2 may be present in
the graph, this does not imply that the host represented
by IP1 initiated the DNS exchange. We may simply be
seeing the response from IP2 to IP1 without the request
being captured bynetflow. This is an artifact of the fact
that we do not see the complete DNS traffic since we are
gathering data only on a subset of peering links.

Along with the edges, we store the weight of the edge
(number of packets involved in the exchange). The infor-
mation about the number of packets on an edge is critical
in looking for outliers in the traffic. For example, a full
TCP flow is often at least 6 packets long and if we only see
one direction of the traffic we should see at least 3 packets.
Any TCP flow with a packet count less than 3 is indicative
of an anomaly. In addition the TCP flag information can
be used to identify if outlier TCP flows occur during the
early part of the handshake.

IV. EXAMINING GRAPH PROPERTIES

Once we have the TCP and UDP graphs, we can exam-
ine a variety of graph properties. The representation of the
traffic data in a graph form was done with two goals in
mind:

† We can look for presence or absence of specific patterns
based on the semantics of the traffic being examined.
† We can examine if interesting attributes are present in
the data based on a generic graph analysis and then deter-
mine if they have useful semantic implications.

Among the attributes of the nodes of interest are its in-
degree and outdegree. Indegree of a node is the number
of edges for which it is the head node and outdegree is the
number of edges for which it is the tail node. For exam-
ple, IP addresses that only send DNS requests will have a
nonzero outdegree but zero indegree. Recall that our as-
sumption is that an edge in our graph has the requester as

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

the tail and the responder as the head (whose port number
is guaranteed to be 53).

Among the attributes of edges, we check for bi-
directional edges. In addition, the TCP and UDP graphs
have edges in common since some nodes may communi-
cate with each other using both protocols. Such edges can
be identified once the graphs have been constructed.

Among graph attributes, we examine the number of con-
nected components, the structure and directed depth of
the components, and indegree and outdegree statistics. In
some cases, a request over UDP may result in partial in-
formation, along with an error of the form “message trun-
cated”, since the data did not fit in the packet. The query
might then be repeated over TCP. We can examine nodes
that repeatedly communicate using UDP and TCP by look-
ing for common edges in the two graphs.

Since data gathering operations are likely to include
anomalous or erroneous input which could severely affect
inferences, we need to check the data for outliers. Once
thenetflowdata has been transformed into a graph, we can
examine the graph for presence of outliers and incorrect
data elements and separate them.

One outlier characteristic we examined was the outde-
gree of nodes in the TCP graph. Recall that TCP is used
for either zone transfers or for sending queries when UDP
request results in a message truncated response. Since al-
most any TCP flow involves a half dozen packets, a TCP
flow with fewer than 6 packets is an anomaly. Due to the
use of hot potato routing on our backbone links, however,
we may see only one direction of the flow. Thus, if we
see less than three packets on a TCP flow, it is an indica-
tor of an anomalous flow. Edges with lower than expected
packet counts could be due to errors innetflowor because
of missed packets.

If we found a very large number of edges with a shorter
than expected TCP packet count and the same node in-
volved as initiator or recipient of communication, that
would be more significant. Such nodes (addresses) could
be viewed as anomalous for several reasons:
1. Machines that have been compromised. The initiator of
communication might be a machine being used to probe
the network for security weakness. If such a host has been
compromised in order to launch an attack, then such hosts
are known aszombies.
2. Machines that are targets of attacks involving IP spoof-
ing. The recipient of communication with a large number
of low TCP packet counts might be the target of an attack.
3. Machines involved in measurements. For example, oc-
casionally a machine may use port 53 on TCP to obtain
RTT measurements.
4. Machines that have been misconfigured.

In any of the above cases, we want to isolate the nodes
and edges of such hosts and remove them from the TCP
graph. The set of nodes can be compared with thenet-
flow data (by examining the TCP fields of those packets)
to see if the host is a target of attack, or falls in the zombie,
measurement, or misconfigured category.

Similarly, examining the prefixes of the IP addresses
reveals addresses such as 0.x.x.x, 10.x.x.x, 192.168.x.x,
as well as ones in the restricted range of 172.16.0.0 to
172.31.255.255. Such addresses are not valid addresses
and have to be removed from the graph. The resulting UDP
and TCP graphs are merged into a single graph for further
analysis. The process graph shown in Figure 1 shows the
merged graph as the final step in the transformation of the
voluminousnetflowdata into a compact graph. All appli-
cations (other than finding zombies and targeted machines)
are carried out by using the merged graph. From this stage
on, thenetflowdata is no longer consulted.

Several bits of information are lost in the reduction of
netflowdata to a graph format. Many of the fields are
not of interest to this application: the next hop router’s
IP address; information about the input/output interface;
autonomous system and prefix mask bits; the accumulated
or of TCP flags. In addition, we lose all temporal informa-
tion as to when the message exchanges occurred or how
many occurred during a specific time interval. Since we
treat information from all router locations equally, we do
not distinguish between the records contributed by differ-
ent routers. When an edge is added to the graph we do
not record if it was added because there was a request, re-
sponse, or both.

V. CHARACTERIZATION OF ADDRESSES

A primary goal of gathering DNS traffic is identifying
clients, local DNS servers, authoritative DNS servers, and
outliers. In this section we discuss our attempts at char-
acterizing the set of addresses seen in the traffic flow. We
should note that some categories might overlap: several
authoritative DNS servers are also configured to serve as
local DNS servers. Gleaning definitive information about
such configuration issues requires information that is not
publicly available. Similarly, the location of data gather-
ing will have a strong impact on the distribution of clients,
local DNS servers, and authoritative DNS servers.

A. Local DNS servers

We begin by attempting to locate local DNS servers.
The properties associated with local DNS servers are as
follows:
† When a local DNS server starts, it first uses a pre-
configured set of root server hints to contact a currently

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

Finding clients

Finding Local DNSFinding Authoritative DNS servers

Locating DNS servers in busy clusters

Merged graph

53,53 edges removed sLD

Root/Top-level AD

AD: authoritative DNS server
LD: local DNS server

sLD: suspected local DNS server
sAD: suspected authoritative DNS server

sClient: suspected clients
kLD: known local DNS server

kAD: known authoritative DNS server
Blue ovals are intermediate output

Black boxes represent external data sets
Green is for cluster application

Red diamonds are verified output sets

sCLIENT =
(talks to sLD) - kLD

sAD
Verify
 via dig

sLD clusters

kLD

kLD clusters

Verified sADs

ADs found in
 root zone files

Web Logs

Busy clusters in
portal Web log

Graph of relative # of
busy clusters with k/sLD

Fig. 2. Using graph to characterize addresses

valid root server in order to obtain a fresh list of root
servers. This list is used, on demand, to obtain the ad-
dresses of authoritative servers for generic top level do-
mains such as.com , .org , and.net .
† A local DNS server serves as a caching local server for
many clients and is thus expected to receive a lot of re-
quests from the set of clients it is responsible for.
† A local DNS server contacts authoritative DNS servers
to obtain an answer on a cache miss.

We use each of the above properties of local DNS
servers to help identify them in our graph. First we
examine the set of 31 known root servers (A.ROOT-
SERVERS.net ... M.ROOT-SERVERS.net, as well as au-
thoritative servers for.net , .com , .org , .mil , and
.edu) to see if any of them are the head node of an edge.
The tail nodes of each of these edges are candidates to be a
local DNS server. We end up with a list of suspected local
DNS servers (sLD in Figure 2).

A node with a small indegree is less likely to be a local
DNS server assuming we can see all the traffic from the
netflowdata. With increasing probability, the higher the
indegree of a node, the more likely it is a local DNS server.
However, given the potential of a local DNS server also be-
ing configured as an authoritative DNS server, high inde-
gree alone does not uniquely identify a local DNS server.
Since there is no automatic way to infer from our data if a

suspected local DNS server is indeed a local DNS server,
we randig against a large subset of the suspected DNS
servers. Any server that replied is by definition a local
DNS server. This set is labeled kLD or known Local DNS
servers.

B. Authoritative DNS servers

An authoritative DNS server is authoritative for a set of
domains and can give the proper up-to-date response for
queries. Authoritative DNS servers (AD) receive many re-
quests but do not generate any queries other than query to
the root server at startup time. An AD responds to requests
from local DNS servers.

By examining nodes whose outdegree is zero2 and who
receive requests from local DNS servers, we identify sus-
pected authoritative DNS servers. Thus, the heads of edges
whose tails are suspected local DNS servers are candidates
for authoritative DNS servers. However, in order to gen-
erate the set of suspected authoritative DNS servers, we
first remove edges in the merged graph that are between
IP addresses that both used port 53 to speak to each other.
Traffic between two hosts both of which use port 53 im-
plies that the tail or the head of the edge could be a local

2It is possible that during our data gathering interval an authoritative
server was rebooted and thus might send a request to the root server
upon startup, but that is a relatively remote possibility.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

DNS server. Including such edges in the graph would end
up drawing a lot of clients into the suspected authoritative
DNS server collection.

We use an external data set available to us to verify some
of the authoritative DNS servers. This data set consists of
the zone files of top level generic domains (.edu , .com ,
.net , ...) as well as several country domains. Since this
list consists of known authoritative DNS servers we can
verify a fraction of suspected authoritative DNS servers.
However, there are many authoritative DNS servers whose
information is not registered with the top level generic do-
mains. For example, over 230 country domain servers may
hold the zone files of several authoritative DNS servers.

C. Clients

Clients are generally expected to be the largest fraction
of the IP addresses. Inside an administrative domain where
netflowdata is gathered, one may have a reasonable idea
of prefixes owned by the organization against which the
suspected list of client IP addresses can be checked.

Clients have a modest outdegree since they typically
only have two or three local DNS servers configured. Their
communication on port 53 is restricted to talking to these
servers. Direct communication to the root DNS servers via
tools like dig may complicate our assumptions but such
traffic is generally a very small fraction originating from
only a few clients.

Note that, as in the case with generating suspected au-
thoritative DNS servers, we remove edges whose port
numbers on both sides are 53. Clients rarely run using
privileged ports (less than 1023). Also, we do not know if
the tail or the head was the host on which a DNS server
ran. Since there may be some communication between lo-
cal DNS servers themselves, we shrink the list of IP ad-
dresses that talk to suspected local DNS servers (sLD) by
the list of known local DNS servers (kLD) and generate
our list of suspected clients.

VI. GRAPH IMPLEMENTATION ISSUES

For the class of problems considered, we require a sim-
ple type of directed multigraph representation. Graph
nodes can be identified with IP addresses with no addi-
tional attributes; edges consist of a directed pair of nodes,
with an aggregate packet count attribute. Also, as noted
above, edges fall into two categories: ordinary and bi-
directional.

There are four principal tasks involved in our analysis:
† Compute the outdegree and associated packet count in-
formation of a node
† Remove all edges containing certain nodes
† Remove bi-directional edges

† Find neighbors of a node
plus the auxiliary tasks of merging graphs together and
splitting them apart. These are all basically simple algo-
rithms, each requiring about 100 lines of code, and with
complexity at worstO(n logn). Most of the tasks differ in
only a few lines of code. For the data sizes we are dealing
with (cf. Table II), merging data files to create the merged
TCP graph takes about 340 seconds; deriving the zombie
nodes takes about 13 seconds; stripping zombies and ille-
gal nodes to create the reduced TCP graph takes around
31 seconds; stripping and merging data files to create the
reduced UDP graph uses about 10,115 seconds; merging
the UDP and TCP graphs takes 1364 seconds; and, finally,
removing bidirectional edges from the merged graph re-
quires 108 seconds. A typical neighbor query might take
135 seconds. Basically linear tasks, like this last, are dom-
inated by the time to read the graph. All times reported are
based on a 28-processor, 333 MHz Sun SPARC Ultra En-
terprise 1000, with 20,480 Mbytes of main memory. These
reflect total CPU times. Some of the tasks can be done in
parallel, thus significantly reducing wall clock time.

The structure of all the programs is identical: read a col-
lection of graphs; for each edge, compute and store some
information; print the stored information. This simplicity
is helpful, in that it makes it easy to tailor the data struc-
tures of each program to the task at hand. Thus, if we were
computing outdegree information, and know that there are
no duplicate edges in the input graphs, we only need to
maintain a set of nodes, and can ignore the edge structure.
Given the size of the graphs involved, minimizing memory
usage significantly improves performance.

We use two formats for the external storage of
graphs, both edge-oriented. There is a text format, in
which each edge is represented as a line of the form
“X.X.X.X->X.X.X.X <packet count> ”. For bi-
directional edges, we use “<>” rather than “-> ”. This for-
mat is used for the intermediate data derived from thenet-
flow database, and when humans need to view the graphs.
Principally, though, we employ a binary format, with each
edge represented by 12 bytes: 4 bytes each for the 32 bits
needed for the IP address of the tail and head, followed
by 4 bytes for the packet count. In addition, the high-bit
of the packet count is set to indicate a bi-directional edge.
Table II gives a feel for the file sizes involved, and shows
the obvious shrinkage obtained by moving from the text to
the binary format. Some of the larger graphs are actually
partitioned into several files. This reduces memory usage,
allows for parallelism, and can be used to limit the domain
of a search.

All the tools use an underlying library for reading and
writing the graphs in their several formats. Both formats

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

TABLE II
PROGRESSIVE GRAPH SIZES

Edge count Kilobytes
Daily UDP data 257,339,100 7,832,896
Daily TCP data 22,435,114 691,057
Merged UDP graph 125,253,867 1,503,046
Merged TCP graph 21,949,654 263,395
Reduced UDP graph 125,204,439 1,502,453
Reduced TCP graph 7,842,576 94,110
Merged TCP+UDP graph 132,849,091 1,594,189
Merged TCP+UDP graph 76,224,714 914,694
without 53-53 edges

are self-identifying. Thus, a program can give the I/O li-
brary a list of file names and the library will provide the
correct reader for each file. This library is about 300 lines
of C code, and includes a predicate for identifying legal IP
addresses. Set operations, when needed, are implemented
using a general-purpose dictionary library [8].

To use this approach for an on-going analysis, the tools
and file formats can be used incrementally, without red-
eriving the graphs anew from thenetflowdata. New edges
can be added to the basic TCP graph, and a new list of
zombies generated. The subset of new edges both of
whose nodes are valid can then be merged into the vari-
ous reduced graphs. In addition, if any new zombies are
identified, these associated edges can be stripped from the
graphs. The only case requiring more work would be if the
changes remove the zombie status of a node, requiring the
re-introduction of all its associated edges.

VII. R ESULTS

We now present the result of our data gathering and
analysis. A total of 20 days worth ofnetflowdata (spread
over four contiguous periods of five days each in the course
of one year) was gathered resulting in over 1 terabyte of
data. From this data we extracted traffic on port 53 con-
sisting of nearly 7.5 billion packets of UDP traffic and
149 million packets of TCP. The resulting UDP graph had
5.4 million nodes and 125 million edges while the TCP
graph had 19 million nodes and 22 million edges. Table III
presents the precise numbers. After being filtered for port
53 traffic and converted to a graph, over one terabyte of
rawnetflowdata resulted in a graph of size 1.5 GB.

A. Anomalous and illegal addresses

We closely examined the raw TCPnetflow data for
anomalous IP addresses. We identified 26 addresses whose

outdegree was greater than 100K and whose outbound
edges had packet counts less than three for at least 90%
of the time. These anomalous addresses contain suspected
zombies and hacked IP addresses.

We extracted the fullnetflow records for packets in
which the anomalous IP address appeared in the source
or destination field and examined the TCP flags field. The
TCP flags field in anetflowrecord is the bitwiseor of all
TCP flag fields of all TCP packets counted in that partic-
ular netflowrecord. For example, a TCP flag field entry
of “RST, SYN” for two TCP packets indicates that at least
one of the TCP packets had the RST bit set and at least one
of them had the SYN bit set.

Table IV shows the result of this investigation for
two anomalous IP addresses (actual addresses have been
masked). IP1 is a host which sent at least 1,021,268 SYN
requests and received at least 949,839 datagrams with the
RST and/or ACK bit set. Since not a single datagram with
the SYN ACK bit set was sent to IP1, we determine that
IP1 is a host that used TCP port 53 for probing via at least
1,021,268 SYN requests.

IP2 is a host that our records show contacted 2,556,908
distinct IP addresses using TCP port 53. IP2 sent
6,170,090 SYN packets to which at least some machines
responded with a packet which has the SYN bit set. Since
we do not see all traffic for a particular IP address we do
not know theexactnumber of TCP replies with the SYN
bit set which were received by IP2. However, we can give
an upper bound of 3,989 of such packets recorded in our
netflowdata. This is the total packet count of allnetflow
records sent to IP2, for which the bitwiseor of the TCP
flags contains the SYN bit.

All other anomalous IP addresses we isolated before
creating the merged graph were similar in that they origi-
nated a large volume of traffic but received only a very few
replies. Therefore, we can conclude that all suspect IPs we
isolated were probing the network or were misconfigured.
None of the addresses were targets for a denial of service
attack using IP spoofing.

1915 IP addresses were removed as illegal since they
began with 0.x.x.x, 10.x.x.x, etc. In all, 6,793,678 IP
addresses and a corresponding 7,842,576 edges were re-
moved as illegal in the TCP graph. The UDP graph with
illegal nodes (and corresponding edges) removed had 5.4
million nodes and 125 million edges. The TCP graph with
illegal nodes (and corresponding edges) removed had 6.8
million nodes and 7.8 million edges. A single suspected
zombie alone probed 5,153,666 different IP addresses.
Since this suspected zombie presumably did random prob-
ing, the ratio of DNS servers in that set is very small. Most
of those 5 million nodes were removed when the suspected

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

TABLE III
DNS GRAPH PROTOCOL BREAKDOWN

nodes edges packets
UDP raw 5,391,685 125,253,867 7,520,127,483
Without 5,374,094 125,204,439 7,506,734,902
illegal IPs
% Reduction 0.33 0.04 0.18

TCP raw 19,732,072 21,949,654 149,220,358
Without illegal, 6,793,678 7,842,576 124,327,321
anomalous IPs
% Reduction 66 64 17

TABLE IV
ANOMALOUS ADDRESSES EXAMINED

Pkts with IP Pkts with IP
in src field in dst field

IP1 total 1,021,268 949,839
SYN 1,021,268 0
RST ACK 0 949,839
IP2 total 6,177,723 33,891
SYN 6,170,090 1
SYN ACK 46 214
ACK 121 343
FIN SYN ACK 6,906 3,526
RST 144 341
RST ACK 5 29,110

Note that for IP2, the table does not show several infrequently
used bit settings such as FINjSYNjRSTjACK.

zombie was removed from the TCP graph. This explains
the dramatic percentage reduction in the TCP graph.

The merged graph had 11.7 million nodes and 132.8
million edges. The number of bi-directional edges in the
merged graph was 56,624,377, involving 1,257,983 nodes.

B. Characterizing addresses

Once the merged graph has been obtained we used a
variety of graph queries to partition the set of addresses
into clients, local DNS servers, authoritative DNS servers.
Since there is no way to categorize the addresses directly,
we begin with correspondingsuspectedsets and with in-
creasing confidence group them into theknownsets. Ta-
ble V presents the actual numbers extracted from our
merged graph.

TABLE V
CHARACTERIZING ADDRESSES

Suspected LDNS 564,077
SLDNS tested viadig 224,348
Known LDNS 58,527
Suspected Authoritative 2,919,455
SAD with outdegree=0 2,717,025
Known AD 217,721
Suspected Client 3,178,981
SClient with Known LDNS removed 3,129,037
SClient with Known LDNS removed

and with indeg=0, outdeg< 4 2,298,988

B.1 Characterizing local DNS servers

By looking for the set of edges whose heads were in the
set of known top level authoritative servers or root servers,
we identified nearly half a million IP addresses as sus-
pected local DNS servers (sLD in Figure 2). Checking
via dig nearly half of this suspected set led to confirming
around 60 thousand, about one in four. These confirmed
addresses are the known local DNS servers (kLD). Local
DNS servers may refuse to respond todig if the request
came from a set of clients it does not recognize. Thus the
absence of response does not imply that the server is not
a local DNS server. As a way of cross checking, we se-
lected four sets of 5,000 addresses at random (for a total of
20,000) from the hitherto untested set and ran

dig @%s A.ROOT-SERVERS.NET

where %s represents the IP address of the server tested. All
servers which returned an A record were marked as known
local DNS servers. In each of the four sets, nearly 1 in 4
IP address was confirmed as known local DNS servers.

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000 10000 100000 1e+06

N
um

be
r

of
 S

C
LI

E
N

T

Outdegree

SCLIENT
SCLIENT with KLDNS removed and indegree 0

Fig. 3. Outdegree distribution of suspected clients

B.2 Characterizing authoritative DNS servers

Removing 56,624,377 edges with both port numbers 53
from the merged graph and examining the set of edges
whose tails are in the sLD set yields 2.9 million addresses
that form our suspected authoritative DNS server set (sAD
in Figure 2). Since we do not expect authoritative DNS
servers to make requests except during startup, we expect
that a vast majority of the ADs to have an outdegree of
0. With this stipulation, we have 2.7 million suspected au-
thoritative DNS servers. We extracted 485,661 addresses
from the zone files of.arpa , .com , .edu , .net , .org ,
and .root , and 42,501 addresses from several country
domains. 217,721 addresses (over 40%) of the merged
set of 527,273 authoritative DNS servers (with duplicates
removed) were found in our suspected authoritative DNS
server list.

In the intersection of suspected local DNS servers
and suspected authoritative DNS servers we found nearly
150,000 servers that are configured to support both roles.

B.3 Characterizing DNS clients

Removing 56,624,377 edges with both port numbers 53
from the merged graph and examining the set of edges
whose head are in the sLD yielded nearly 3.2 million ad-
dresses. Most clients using DNS are configured to use
one to three local DNS servers and nearly 73% of the sus-
pected clients (with known local DNS servers removed)
have an outdegree less than 4 and an indegree of 0. Fig-

ure 3 shows the distribution of outdegrees of the suspected
clients. As can be seen, a vast majority has a low outdegree
as expected but there are several outliers. Clients whose
outdegrees are greater or equal to 4 are likely to be local
DNS servers that talked to another local DNS server, or
machines that are configured to run as local DNS servers
and have users generating DNS queries, or hosts that are
involved in probing activity.

C. Other graph analysis

Besides the basic analysis, we also did a preliminary ex-
ploration of other properties of the graphs at hand, such as
degree statistics, connected components and graph struc-
ture. Two characteristics are obvious. One is the similarity
to large random graphs, in which there are many connected
components, most small with the numbers trailing off as
the size of the components increase, followed then by one
large “monster” component containing most of the graph.
The other characteristic is, not surprising, the prevalence
of fan-like structures among the small components.

VIII. A PPLICATIONS

Once we have categorized the IP addresses, we can ex-
plore a variety of applications that can be built on top of
the lists. The identification of suspected local DNS servers
alone is extremely valuable in the context of Content Dis-
tribution Networks (CDNs). Most CDNs base their redi-
rection decision on the location of the local DNS server of
a client (and not based on the location of the client). This

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

TABLE VI
WEB/DNS DATA EXAMINED FOR CLUSTERING

APPLICATION

Server Suspected Known
log LDNS DNS

IP addresses 7,652,670 564,077 58,527
of Clusters 114,928 69,923 20,736
of busy clusters 43,164 – –

requires CDNs to map the location of such servers within
the Internet. Knowing a superset of local DNS servers in
the Internet greatly reduces the number of IP addresses
which have to be mapped. Using our data it seems suf-
ficient to precisely map 564,077 IP addresses, in contrast
to all IP addresses present in the Internet.

One application is dynamically choosing the best
local DNS server. Currently a client selects a lo-
cal DNS server either by using a static file (typically
/etc/resolv.conf) or by using a DHCP (Dynamic
Host Configuration Protocol) server. Although DHCP pro-
vides a way to dynamically choose a set of local DNS
servers, it typically treats all servers in the selected set
equally. On a large network with a diverse set of local DNS
servers this may not be the right action. A mechanism
that can help clients choose an appropriate DNS server,
based on a set of criteria, would be beneficial. Helping
clients choose a local DNS server close in terms of net-
work proximity is obviously beneficial. Clients often make
DNS queries followed by other actions, such as fetching a
Web page. The administrator of the client system could
use information gathered to make the proper choice of lo-
cal DNS server and thus speed up client requests.

We use the network aware clustering technique outlined
in [4] to cluster the set of IP addresses representing clients
in a large portal Web site server log. A total of 104,018,140
requests were received at the Web site from over 7.6 mil-
lion unique IP addresses. The IP addresses were clustered
using 441,230 unique BGP prefixes gathered by merging
14 separate routing table snapshots in May 2001. We ex-
amine onlybusyclusters: clusters that were responsible
for a reasonable fraction of the requests to the Web site.
By sorting the number of requests emanating from each
cluster and selecting the top few clusters we end up with a
large fraction (70%) of the overall number of requests. A
total of 43,164 busy clusters generated over 72.8 million
requests.

We then cluster the IP addresses in the suspected local
DNS server list (sLD) and the known local DNS server list
(kLD) separately. We examine how many of the clusters of

the suspected (known) local DNS servers are found in the
set of busy clusters of the Web clients. Each match indi-
cates the presence of at least one suspected (known) DNS
server in the busy clusters. Table VI presents the raw num-
bers of the cluster experiment. By plotting the percentage
of matches found in increasing fractions of the set of busy
clusters of Web clients we can get a relative measure of
busy clusters that include a suspected (known) local DNS
server. Figure 4 shows the relative match between both the
suspected and known DNS server clusters against clusters
of the Web clients. This is a lower bound on the number
of local DNS servers present in these clusters.

The bump in known local DNS servers graph is not
present in the suspected local DNS servers. We surmise
that the top few of the busiest clusters are likely to have
proxies or spiders (which typically generate a lot more re-
quests than ordinary clients). Such servers often also serve
as local DNS servers and are typically configured to not re-
spond to probe queries from outside. The fact that thenet-
flow data sees a lot of DNS servers belonging to the busy
clusters is understandable. Clients belonging to busy clus-
ters access a wide variety of servers and at least some of
their DNS traffic will traverse the backbone and are likely
to be seen in ournetflowdata. The steady decline in num-
ber of local DNS servers that we see in the less busy clus-
ters is also not surprising: their clients’ Web traffic to the
portal site is low and thus their DNS requests are less likely
overall to traverse our backbone.

IX. SUMMARY

We have presented a methodology of large scale Internet
measurement and analysis that greatly benefits from effi-
cient processing software, a graph representation, and a set
of generic library routines that helps query the graph for
several DNS-specific properties. Our goals were to con-
vert the large amount of data obtained by thenetflowtool
to a terse graphical representation that serves as a base for a
variety of applications. The applications, such as locating
local and authoritative DNS servers, can be constructed ef-
ficiently. Answers to a variety of questions about the struc-
ture of the graph, and properties of nodes and edges, that
have domain-specific meaning can be obtained quickly.
We use simple attributes of nodes, like in- and outdegree,
to easily characterize the set of IP addresses. There is little
need to resort to the much larger and somewhat unwieldy
format of the output ofnetflow. The reduction in size of the
data without loss of significant information and the abil-
ity to mine the graph rapidly suggests that this paradigm
of traffic mining might be useful for other network traffic
datasets as well.

With a high degree of probability we have characterized

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

R
at

io
 o

f C
lu

st
er

 w
ith

 a
t l

ea
st

 o
ne

 L
D

N
S

Cluster Rank

SLDNS
KLDNS

Fig. 4. Looking for DNS servers in busy clusters

the set of IP addresses involved in the flow to be one of
a DNS client, local DNS server, authoritative DNS server,
or an outlier such as a suspected zombie. Using available
tools (such asdig) or external datasets (such as zone files
of top level generic domains) we have verified that our
characterization is correct. Using Web server logs from
a portal site and the network aware clustering technique,
we have been able to place local DNS servers in busy clus-
ters, with applications in deployment of content distribu-
tion networks.

Our entire process is automated with scripts used to con-
vert thenetflowdata to graphs and a tailored graph library
software to efficiently mine the graph. A variety of other
applications are being constructed using the graph.

At present, the size of the graphs, and the characteris-
tics of the problems and the machines we are using make
our simple approach feasible. As the graphs grow, other
tactics will become necessary. Some are simple, such as
making use of 64-bit hardware, using the monotonic and
uniform memory allocation pattern to avoid unnecessary
space overhead, or reducing the number of intermediate
(especially, text) representations. More sophisticated im-
provements include the use of external memory algorithms
(e.g.,[9]) and variable record formats to reduce disk space
usage.

The approach presented here can be generalized to deal
with other analyses of network data for which one can
capitalize on the duality of relational data and attributed
graphs. If the relevant questions deal primarily with an

underlying binary relation and some associated attributes,
and, by its nature, this is often true of network data, then
one can extract the associated graph, reducing the data
size, and then apply the appropriate graph operations. In
the case ofnetflowdata, given the fixed data schema and
uniformity of the analysis tasks, it should be possible to
parameterize the process for other analyses. Thus, one
should be able to describe a desired model, requiring cer-
tain data fields in anetflowrecord, and the actions on the
model, and have the extraction and analysis tools gener-
ated semi-automatically.

In future work, we plan to locate invalid delegates (also
known as lame delegates in DNS parlance), machines that
either do not exist or have been improperly registered as an
authoritative DNS server for a domain. Currently, there is
no known technique to automatically identify these. How-
ever, the graph representation will help generate a nar-
rower set of suspected lame delegates when we use the
sequencing of request information.

X. ACKNOWLEDGMENTS

We thank Randy Bush for several useful conversations
that clarified important operational issues and oddities that
we observed. We thank Carsten Lund for his initial assis-
tance with thenetflowdata.

REFERENCES

[1] B. Krishnamurthy and J. Rexford,Web Protocols and Practice:
HTTP/1.1, Networking Protocols, Caching, and Traffic Measure-

ACM SIGCOMM INTERNET MEASUREMENT WORKSHOP 2001

ment. Addison-Wesley, May 2001. ISBN 0-201-710889-0.
[2] B. Krishnamurthy, C. Wills, and Y. Zhang, “On the use and perfor-

mance of content distribution networks,” June 2001. Under sub-
mission.

[3] A. Shaikh, R. Tewari, and M. Agrawal, “On the effectiveness
of DNS-based server selection,” inProceedings of IEEE Infocom
2001, 2001.

[4] B. Krishnamurthy and J. Wang, “On network-aware clustering of
web clients,” inProceedings of ACM SIGCOMM, August 2000.
http://www.acm.org/sigcomm/sigcomm00/

program.html .
[5] M. Grossglauser and B. Krishnamurthy, “Looking for science

in the art of network measurement,” inInternational Workshop on
Data Communications, September 2001. Taormina, Sicily, Italy.

[6] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True, “Deriving traffic demands for operational IP networks:
Methodology and experience,” inProc. ACM SIGCOMM, (Stock-
holm, Sweden), August 2000.

[7] “Netflow.”
http://www.cisco.com/warp/public/

732/netflow/index.html .
[8] K.-P. Vo, “Cdt: A Container Data Type Library,”Software Practice

and Experience, vol. 27, pp. 1177–1197, 1997.
[9] J. M. Abello and J. S. Vitter, eds.,External Memory Algorithms,

vol. 50 ofDIMACS: Series in Discrete Mathematics and Theoreti-
cal Computer Science. American Mathematical Society, DIMACS,
1999.

