
CDN Brokering∗

Alexandros Biliris, Chuck Cranor, Fred Douglis, Michael Rabinovich,
Sandeep Sibal, Oliver Spatscheck, and Walter Sturm

AT&T

Florham Park, NJ

In Proceedings of the 6th International Workshop on Web Caching and Content Distribution, Boston, MA, June, 2001

Abstract

Content distribution networks (CDNs) increase the capacity of
individual Web sites and attempt to deliver content from caches
that are located “closer” to end-users than the origin servers that
provide the content. CDN brokering provides CDNs a way to in-
teroperate by allowing one CDN to intelligently redirect clients
dynamically to other CDNs. This paper describes the goals, ar-
chitecture, and performance of a CDN brokerage system. Our
system has been deployed on the Internet on a provisional basis,
and our architectural ideas have helped advance the evolution of
Internet standards for interoperating CDNs.

1 Introduction

As the scale and use of the Internet increase, Web content
providers find it increasingly difficult to serve all users wish-
ing to access their content with an appropriately low response
time, especially in the face of unexpectedly high loads (often
called “flash crowds”). Content distribution networks (CDNs)
have become a popular approach to address this problem; they
typically deploy multiple caches throughout the Internet, allow-
ing them to offload the management of these caches from in-
dividual content providers. This offers economies of scale and
greater abilities to respond to high loads. CDNs also try to de-
crease latency for individual clients by satisfying client requests
from nearby caches.

Despite these advantages, CDNs have their own limitations.
It is extremely capital-intensive and operationally complex for
CDNs to achieve the scale necessary to be present at the edge
of every network or region of the world. Even where they have
cache space close to a particular network, demand may outstrip
capacity from time to time or failures may occur. Clearly the
ability for multiple CDNs to interoperate can offer additional

∗Contact address: icds-broker@research.att.com

flexibility by letting one CDN direct clients to a different CDN in
order to improve scale, fault tolerance and performance. This is
sometimes referred to as “Content Distribution Internetworking”
(CDI), the subject of efforts within the IETF.

We define CDN Brokering as the ability of one CDN to redi-
rect clients dynamically among two or more CDNs. While over
the past few months the Content Alliance has put forth several
documents [2, 7, 8, 9, 13] describing in general terms how one
might let CDNs interoperate, this paper describes an architecture
and implementation of a specific realization of this idea, which
has been operational since July, 2000. We call our DNS-based
system the Intelligent Domain Name Server (IDNS). IDNS re-
sponds to DNS requests intelligently based on a dynamic, load-
sensitive configuration rather than using static information.

The rest of this paper is organized as follows. Section 2 dis-
cusses background and motivation. Section 3 describes CDN
brokering in general terms and Section 4 addresses our specific
software architecture. Section 5 discusses the performance of
our system. Section 6 covers related work, and Section 7 con-
cludes.

1.1 Terminology

Content provider companies that sign up for a CDN service are
known as customers and Web clients (users or client proxies)
that access customers’ content are called clients.

Clients typically look up DNS information via name servers
in their own network that act on behalf of a collection of comput-
ers; these client-side name servers are called Client DNS servers.

2 Background and Motivation

Not all CDNs are created equal or have the same goals. Some
are small, regional services that target a particular segment of the
Internet, for instance a country of moderate size. Others have a
large presence within a particular network, but are limited to the



CDN Brokering WCW’01

reach of that network unless they have extensive BGP peering
relationships [14] or other connectivity that provide high band-
width to many other networks. Still other CDNs are worldwide
and attempt to encompass a large fraction of the Internet. How-
ever, deploying a CDN in many edge locations and managing
those servers is an enormous commitment in capital and labor.

In fact, a CDN of any scale might find it financially advan-
tageous to have an arrangement that allows it to wholesale ca-
pacity to other CDNs. Similarly, the ability to buy capacity at
wholesale from another CDN in those rare cases when one’s
own CDN is overloaded or (partly) unavailable would provide
extra insurance. Finally, a CDN that wishes to expand its pres-
ence might resell capacity from other CDNs on an ongoing ba-
sis, rather than under exceptional circumstances.

CDN brokering involves a mechanism that allows the broker
to dynamically decide on the fraction of requests to be served
from its own CDN, and to split the remaining requests among
other partner CDNs, again according to some dynamically de-
cided percentage.

3 Brokering Components

In this section we describe in general terms how CDN broker-
ing is accomplished. A brokering system needs a mechanism to
select which CDN is the best to serve a particular request (Sec-
tion 3.1), a way to direct clients to that CDN (Section 3.2), a
way for a partner CDN to map requests back to an origin server
to obtain content (Section 3.3), and an accounting mechanism to
bill for traffic when appropriate (Section 3.4).

3.1 Selection

Selecting to which CDN a client should be directed requires two
things. First, it requires a mechanism to identify where a re-
quest came from. Second, it requires information about suitable
locations to which the client can be directed at any given in-
stant. Generally speaking, the biggest decision in this regard
is whether to serve the request within the brokering CDN or to
redirect to another CDN. We discuss CDN selection in detail in
Section 4 in the context of our architecture.

3.2 Redirection

Figure 1 depicts a redirection mechanism for a brokering CDN,
which we refer to as B. The diagram also shows two other “part-
nering” CDNs, G and H. The edge servers are shown as rect-
angles and the DNS servers are shown as small ovals. Each of
the CDNs has its own DNS server(s) that it uses to direct clients
to its own servers. Of particular importance are the brokering
DNS servers that allow B to redirect clients not just to one of its

own servers, but to any other partnering CDN as well. This is
accomplished through another layer of indirection as explained
below.

An underlying assumption is that the redirection mechanism
is using DNS and that B is authoritative for the hostnames its
customers are having it serve, either directly or via a CNAME
redirection. (There are other possible methods for what the Con-
tent Alliance refers to as “request-routing” [2]; we compare our
approach to some of them in Section 6 below.) DNS systems
use time-to-live (TTL) values to control the granularity of host
assignments, and the selection of an appropriate TTL is impor-
tant to balance the overhead of brokering against the impact of
sending the clients of a particular client-side DNS server to one
cache or CDN.

Assume that a customer has signed up for service with B,
and a client requests content provided by this customer. The
sequence of steps for a client to retrieve that content is as fol-
lows:

1. The client attempts to resolve the domain name in the URL
of the content piece hosted by B by sending a lookup re-
quest to the local Client DNS, unless the client has an un-
expired response already cached.

2. The Client DNS eventually contacts one of the brokering
DNS servers (BDS) that is authoritative for that domain.

3. The BDS then selects one of the following possibilities de-
pending on the control policy that it supports:

Serve externally: A DNS-based brokering mechanism
forwards the request to another CDN via DNS
CNAME or NS response. The client DNS server re-
solves this response further to retrieve an A record.
This approach is described further in Section 3.3.1.

Serve internally: If the BDS selects B ’s own CDN, it has
several options depending on whether it can assign a
specific (virtual) cache directly:

• Return an A record that contains the IP address
of a server within its own CDN. This is the most
efficient option, but it requires the closest coop-
eration between the BDS and the rest of the bro-
kering CDN, B.

• Perform a triangular resolution; i.e., forward the
DNS query to a DNS resolver for B ’s CDN, and
let that DNS server respond directly to the client
DNS server.

• Redirect the client DNS server explicitly to B ’s
internal DNS server, using the same techniques
as for external CDNs.

2



CDN Brokering WCW’01

6

NS or

ORIGIN SERVER

CDN B

CDN "H"

CDN "G"

CNAME redirect

Triangular

Resolution

Brokering DNS
(IDNS)

Client DNS

CLIENT

EDGE SERVER

1

2 3

45

6

5

Figure 1: High level schematic of the IDNS redirection mechanism

4. The Client DNS forwards the IP address (DNS A record)
of the selected edge server to the client.

5. The client sends the request for the content to the selected
edge server.

6. The edge server satisfies the client request either by serving
it from its cache or from the origin server.

3.3 Naming

The previous subsection described how a client is directed to a
server that will provide the requested content. Here we discuss
how that server is selected within the partner network and how
it knows what content to provide. These two issues are related,
as they determine the naming conventions that different CDNs
can use to internetwork.

3.3.1 DNS mapping

In Section 3.2, we described a choice in which B redirects a
client DNS server to G using CNAME or NS, but did not de-
scribe what hostnames would be used or what G would do once
it receives a request. For NS redirection, G is made authoritative
for the lowest level of the domain name; since it sees the original

hostname for the customer, it knows exactly which host’s con-
tent is being requested. For CNAME redirection, however, the
client DNS server is given a new DNS name in G ’s domain. If G
treats all servers equivalently, it needs no special information at
the time of the DNS query: it will resolve to a cache, and use the
HOST header of the HTTP request to identify the content. But if
G serves content for this customer only from some of its caches,
it must identify the customer at the time of the DNS lookup, and
B and G must agree on the format of that name.

We use semantic mapping to exchange that information. B
transforms hostnames automatically when redirecting, for in-
stance:

a.example.com -> a.example.com.B.G.com

In this case, the presence of CDN B in the domain name in G ’s
DNS namespace implies that B has redirected the request to G.
Although this semantic mapping does not prevent the encoding
of individual object IDs in the DNS name we do not encourage
such an encoding. Such an encoding would increase the num-
ber of DNS names used and consequently the load on the DNS
system.

3.3.2 Obtaining Content

A second problem is allowing G to serve the requested content.

3



CDN Brokering WCW’01

Control element

agent

config
agent

load
agent

DNS/control
interface

DNS
Engine

Control
component

agent interface

DNS element

management

Figure 2: Architectural overview of IDNS

To go to the origin server, G ’s cache must be able to find the
IP address for a host serving the content of a.example.com.
Typically, CDNs statically configure caches to have a “back
door” from which to obtain content on a miss in order to avoid
loops that would redirect queries for the original hostname back
into the CDN itself. They might identify hosts by a specific IP
address (bypassing DNS) or a hostname that does not resolve
via the CDN. This static configuration must be done for each
brokered site.

3.4 Accounting

Currently, CDNs charge their customers based on usage. They
are responsible for collecting usage information and for mak-
ing that information available to the customers when they issue
bills. CDNs may bill each other explicitly for usage, or perform
other forms of settlement, but regardless there must be a mech-
anism to exchange that information. Both the Content Alliance
and the Content Bridge organizations have efforts underway to
standardize this exchange [3, 13], and we expect to adopt those
methods once they are standardized.

4 IDNS Architecture

Figure 2 shows the high-level IDNS architecture. IDNS consists
of two main elements: a DNS element and a control element.
The first contains the DNS engine process which receives and
answers DNS queries from the network. The control element
maintains configuration information, receives live feedback and
updates the tables used by the DNS engine to resolve requests.
Communication between the two elements is done using a TCP
socket based DNS/control interface.

IDNS’s control element is the heart of the IDNS system. It
consists of a control component and a set of agents. The agents
are used to configure, manage, and obtain load feedback infor-
mation from remote systems. The control component contains

a load balancing algorithm that takes input from the agents and
produces a set of tables (or a set of changes to the current tables)
that are suitable for download into the DNS engine. These tables
should contain the best distribution of CDN resolutions for a set
of client regions, based on a given policy, that can be computed
efficiently.

IDNS’ configuration tables map client DNS server IP ad-
dresses to regions [11] and are used to select between CDNs
serving a client’s region by assigning a set of probability distri-
butions. A region consists of a name and a set of IP prefixes as-
sociated with that region. Regions can be defined in many ways.
For example, IP addresses can be grouped by IP-backbone con-
nectivity or by country. Currently we use Krishnamurthy and
Wang’s [11] approach to clustering clients into regions. The
control component passes the region definitions to the DNS el-
ement using a control update message. The DNS engine then
uses an IP address longest prefix match subsystem to map a DNS
server address to a region.

In the remainder of this section we examine the IDNS archi-
tecture in more detail.

4.1 DNS Element

The DNS engine is a special-purpose DNS server, and was de-
signed to be small and robust. Since it is a stand-alone pro-
cess, other components of the IDNS system can fail and/or
be restarted while the DNS engine will continue to resolve
client DNS requests without interruption using its current con-
figuration. The DNS element supports atomic updates to its
database, and it continues to respond to DNS requests even when
a database update is in progress. These features are achieved by
taking advantage of the copy-on-write memory semantics pro-
vided by the UNIX kernel’s virtual memory system.

4.1.1 DNS Engine Operations

At startup, the DNS engine initializes its tables, creates two
sockets, and then enters its main loop. One socket is used
to receive UDP DNS requests. The other is used for TCP
DNS/control interface requests. These requests are processed
one-at-a-time in the order they are received (requests received
while an update is in progress are queued in the socket listen
queue until they can be serviced). The TCP control connection
has an inactivity timeout to prevent hung control processes from
blocking access to the server.

The DNS element provides transactional update semantics to
the control element. We use two processes, communicating via
a pipe and sharing physical memory in a copy-on-write fashion,
to ensure that exactly one process (with either the original or
modified control tables) serves requests.

4



CDN Brokering WCW’01

4.1.2 Table Management

Internally, the DNS element stores its configuration in three
types of data structures.

Region table: The region table, defined above, clusters all IP
addresses into a set of regions. The DNS engine allows the
fast matching of a given IP address into the region with the
longest prefix match. A default region is used to handle IP
addresses that cannot be mapped to any other region.

Distribution tables: There are multiple distribution tables,
each being representative of a particular set of CDNs used
to offer a particular service. Each of those distribution ta-
bles contains one entry per region, specifying what type of
resolution should be used and to which CDN a DNS re-
quest should be resolved with which probability.

Customer table: The customer table associates customers de-
fined by their DNS name with a particular distribution ta-
ble. The reason for this level of indirection is that a distri-
bution table is determined by the CDNs involved and that
the same set of CDNs is likely to be used by multiple cus-
tomers, though not every customer will use every CDN.

4.1.3 DNS Engine Lookup

To resolve a DNS request, the DNS engine first finds the client
DNS server’s region by searching the region table using longest
prefix matching. It then maps the request to a distribution table
using the requested DNS name and the customer table. Next, it
determines a particular set of probabilities by using the region as
an index in the distribution table. Using those probabilities, one
of the CDNs in the selected entry of the distribution table is used
to resolve the request. Therefore, the overall lookup overhead
consists only of one longest prefix match, one hash table lookup,
one array element lookup, and one simplified random number
generation.

4.2 Control Element

In this section we describe the control element data structures,
load balancing, and control agents.

4.2.1 Control Data Structures

The control element’s three main data structures used to describe
brokering configuration are regions, customers and CDNs. The
region data structure, as described in section 4.1.2, is used to
cluster IP addresses into a more manageable set of regions. Cus-
tomer entries consist of a brokered domain name, an origin do-
main name, and a set of CDNs that the customer may use. CDN

entries consist of a name, capacity and current usage (expressed
as bandwidth), the quality with which a CDN covers a given re-
gion, and a redirection method. Each region is assigned a cover-
age value indicating how well the region is covered by that CDN
and this information is used for load balancing as described in
the next section. The redirection method must be one of “ad-
dress,” “NS,” or “CNAME.”

Generally speaking, the control element configuration de-
scribed by these data structures is dynamically adjusted by the
control component using input from the control agents (see Sec-
tion 4.2.3).

4.2.2 Load Balancing

The main purpose of the control component is to asynchronously
recalculate and update the tables used by the DNS engine ac-
cording to current loads and a given policy.

The load balancing algorithm has to determine the mapping of
<region,set of CDNs> to a probability distribution. This
means that a client in the specified region will be redirected to a
particular CDN with the given probability if the client requested
the Web site of a customer which uses a particular set of CDNs.
To provide protection against flash crowds while generally di-
recting clients to nearby caches, the probability distribution has
to be chosen carefully—considering how well a CDN covers a
particular region and how much capacity is available.

Given the number of variables, the lack of predictability of
client demand, and the possibility of stale and incomplete feed-
back, the design of a robust and scalable control algorithm is
a non-trivial task. Currently, our algorithm takes the following
steps when considering where to send clients from a given re-
gion:

1. Eliminate all CDNs that are overloaded

2. From the remaining CDNs, keep those that serve this re-
gion best as determined by their coverage values

3. For the CDNs identified in step 2, distribute the load among
them based on any available information on current capac-
ity.

While we do not claim that this algorithm is optimal it is
unclear how much improvement would be obtained from more
sophistication unless the load feedback mechanism (described
next) is able to provide more precise and immediate load in-
formation than is currently available. Finding such an optimal
algorithm is outside the scope of this paper.

5



CDN Brokering WCW’01

4.2.3 Agents

As shown in Figure 2, the Control component receives input
from the following three agents:

Configuration Agent: initializes the Control component with
the appropriate configuration.

Management Agent: has a Web-based GUI interface that al-
lows run-time editing of various aspects of the control com-
ponent.

Load Agent: provides load information retrieved from partici-
pating CDNs. We use a structured feedback protocol, over
a secure channel, to report load-related information to the
load agent. Load reports include request rates and band-
width consumption, as well as available capacity, both ag-
gregated and on a per-region basis.

5 Performance

The costs and benefits of CDN brokering in general, and our
IDNS implementation in particular, can be grouped into three
categories. The first category is the performance of the broker-
ing DNS server. The performance of a single DNS server di-
rectly influences the number of DNS servers required to support
a particular site and, therefore, the capital cost of the deploy-
ment. The second category is the delay imposed by the addi-
tional level of redirection necessary to support brokering. This
additional delay is the major potential cost of CDN brokering
in terms of overall latency as perceived by a client. The third
category consists of the potential benefits of CDN brokering:
increased capacity, reduced cost, higher fault tolerance and bet-
ter performance. Since we were not able to test the first three
benefits in our live network, we will concentrate on a case study
of the possible performance benefits.

5.1 IDNS Performance

Since there is no established benchmark for evaluating the per-
formance of DNS servers we will focus on the rate of DNS re-
quests the server can answer successfully to measure its perfor-
mance. This rate determines how many IDNS servers are re-
quired to support a given client population.

5.1.1 Test Setup

To measure DNS request rates, we connected an IDNS server
running FreeBSD 5.0 on a Dell PowerEdge 2450 Server with
one 730MHz Pentium III processor and 1GB of RAM to a set
of five DNS client simulators via gigabit Ethernet. To determine

2000

4000

6000

0
0 50 100 150 200 250 300 350 400

seconds

re
qu

es
ts

 p
er

 s
ec

on
d

no update request

1 update per second

8000

maximum background update load

Figure 3: IDNS performance

the best performance with an idle control component and an idle
set of agents, we measured the maximum number of requests
the server can sustain while supporting a configuration of five
CDNs, 50 customers, and 250 regions.

In addition to performance without update load, we repeated
the experiment while generating one load agent, capacity agent,
or management agent update per second on the control compo-
nent. Note that in this test we did not allow updates to the DNS
engine to be aggregated (this would have reduced the load). The
generated management updates randomly changed the number
of CDNs, customers, and regions in the range from 1-10 CDNs,
1-100 customers, and 1-500 regions. This experiment represents
the behavior of an extremely busy IDNS server. Note that IDNS
scales to a real “user community” by deploying a number of
servers in proportion to the customer load.

We also examined the worst-case behavior of the IDNS server
by using a control component that generates updates as fast as
possible. In this test, the number of CDNs, customers, and re-
gions used is in the same ranges as above.

5.1.2 Results

Figure 3 shows the rate of successful DNS requests as a function
of time. Both the experiment with no control updates and with
one update per second show little variance and can sustain 8700
and 6800 requests per second respectively. Not surprisingly, the
maximum control load experiment shows high variance, but the
average rate is still on the order of 2000 requests per second.

Overall, the rate of 6800 requests per second in a realistic set-
ting is fast enough to support multiple brokered sites. At that

6



CDN Brokering WCW’01

rate if a DNS timeout of five minutes is used by IDNS, an IDNS
server can handle 2,040,000 client DNS servers (more than cur-
rently exist in the Internet). Since RFC1034 [12] requires two
DNS servers for any site on the Internet, a realistic setup could
serve up to 4,080,000 client DNS servers. The load on an indi-
vidual IDNS server is even further reduced by the fact that some
major browser implement in-memory DNS caching with essen-
tially no timeouts.

5.2 Redirection Overhead

Our second set of measurements help determine the overhead of
additional DNS lookups imposed by the extra level of redirec-
tion necessary to support brokering. To evaluate this overhead
we used six test Web sites and measured their performance from
the view of almost 25,000 client DNS servers. (This list of client
DNS servers was acquired using packet traces.)

5.2.1 Test Setup

The test setup consists of six test sites and a measurement ma-
chine. On the measurement machine we used the dig DNS tool
to issue requests to a list of 24,712 DNS servers. The six test
sites fall into the following three categories:

Regular Site: One test site is a regular Web site included as a
base case. The DNS server for this site directly returns an
A record of a single Web server.

CDN Sites: Four of the test sites each use their own real-life
CDNs to serve their content. These sites are used to show
the typical DNS delay across four regular CDNs. Each of
these sites use a CNAME record to redirect the DNS res-
olution of a client DNS server to their CDN. The CDNs
then resolve the CNAME in accordance to their DNS-based
redirection mechanism. Our results are averaged across the
four CDNs measured.

Brokered Site: The final test site is brokered using IDNS. On
this site, a client DNS server first requests the resolution
from the authoritative DNS server of the site which redi-
rects the client DNS server to the IDNS server using a
CNAME. The IDNS server in turn redirects the client DNS
server to one of four CDNs chosen randomly from the four
CDNs measured above. Thus, the average of the four CDN
sites is directly comparable to the results returned by the
brokered site.

To measure the DNS delay of resolving the six test sites, we
request a recursive resolution of the test site domain name twice
in short succession from each client DNS server on our list. The

Success Average Standard
Measurement Rate Delay Deviation
Regular site 99.3% 260 ms 36 ms
CDN average 96.0% 842 ms 22 ms
Brokered site 92.7% 993 ms 81 ms

Table 1: DNS delay with cold client DNS server cache

Success Average Standard
Measurement Rate Delay Deviation
Regular site 99.8% 218 ms 29 ms
CDN average 97.3% 756 ms 83 ms
Brokered site 93.3% 843 ms 103 ms

Table 2: DNS delay with lukewarm client DNS server cache.
The deviation was measured over ten runs.

first request triggers a resolution of the domain name using the
remote DNS server as client DNS server. The second request is
fulfilled from the cache on the remote DNS server and is used to
calculate the delay from our measurement machine to the remote
DNS server being probed. Thus, the delay imposed by the DNS
resolution as seen by the remote DNS server is the difference
between the first and second measurements.

We performed this experiment in two settings:

Cold Client DNS: In the cold client DNS experiment, we
waited for more than two days between each run of the
experiment to ensure that it was unlikely that the remote
DNS server had any parts of the DNS records required to
fulfill the resolution cached. A delay of two days is neces-
sary because the root and top-level name servers specify a
two-day TTL on the top-level DNS records.

“Lukewarm” Client DNS: In the “lukewarm” client DNS ex-
periment we performed each experiment twice, first to
prime the caches of the client DNS servers, then 70 min-
utes later to measure the “lukewarm” performance. A delay
of 70 minutes times out the CNAME and A records; how-
ever, it most likely retains the supporting DNS records in
the cache of the client DNS server.

The first experiment represents the behavior for a first hit to a site
from a DNS server. The second experiment represents a subse-
quent request to the site and is therefore more representative of
what a real user would perceive on a busy site.

7



CDN Brokering WCW’01

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

P
er

ce
nt

 o
f m

ea
su

rm
en

ts

DNS delay in ms

Origin site delay
CDN average delay

Brokered delay

Figure 4: DNS delay with cold DNS cache

5.2.2 Results

Table 1 and Table 2 summarize the results of the DNS delay
measurements.

The first column indicates the percentage of DNS resolutions
for which dig returned a valid result. Dig may not succeed if
too many of the DNS datagrams required to recursively resolve
the DNS name are dropped by the network. Another source
of unsuccessful requests occurs when the request sent from the
measurement machine to the remote DNS server is dropped. It is
not surprising that the more complex resolution of a DNS name
pointing to a CDN has a higher chance of a unsuccessful resolu-
tion.

Overall, the delay added by brokering on cold client DNS
servers is on the order of 150 ms. In the more realistic case
of lukewarm client DNS servers, the delay added (about 87 ms)
is substantially smaller. It is interesting to observe that the gap
between the CDN accelerated Web site and the origin site on a
cold client DNS server is the order of 582 ms and in the case of
lukewarm client DNS servers, the overhead imposed by CDNs
is on the order of 538 ms.

Figure 4 and Figure 5 show the cumulative delay distribution
of the cold and hot client DNS server experiment. In both figures
the delay distributions for the CDNs and the brokered site show
a bend at the five second mark. This represents a DNS timeout
triggered by the loss of one or more DNS datagrams. Comparing
the delay distributions, the higher average delay of the CDN and
brokered sites seem to originate from the larger number of such
DNS timeouts and the associated resolution time of more than
five seconds.

0

20

40

60

80

100

0 1000 2000 3000 4000 5000 6000

P
er

ce
nt

 o
f m

ea
su

rm
en

ts

DNS delay in ms

Origin site delay
CDN average delay

Brokered delay

Figure 5: DNS delay with lukewarm DNS cache

5.3 Overall Performance

In addition to the potential benefits of increased CDN capacity,
reduced cost and better fault tolerance, brokering may also of-
fers the opportunity to improve the performance of a Web site.
To illustrate this point we performed a case study on two real
CDNs: G and H. We refer to these CDNs anonymously because
our purpose is to demonstrate the merits of brokering rather than
to comprehensively evaluate specific CDNs (as in [10]). Note
that neither CDN is is owned by AT&T.

5.3.1 Test Setup

First we establish the performance of G and H in different loca-
tions. To do this we downloaded two Web pages hosted by the
CDNs from eleven different locations. The Web site used for G
has a size of 39179 bytes and the Web site of H contains a total
of 43944 bytes. Both pages consisted of one main HTML object
containing thirteen embedded images. The test browser in each
location first downloaded the HTML page and then downloaded
the embedded images using four parallel connections. The ex-
periment was performed at the same time for each CDN and
repeated ten times.

Figure 6 shows the results of the experiment. For each CDN,
two values are reported. The values reported in Figure 6(a) are
the initial delay until the first byte is received, not including
the DNS lookup delay. The values reported in Figure 6(b) are
the throughput on the application level in KBytes per second.
The results show that neither G nor H performed better than the
other in all eleven locations. In fact, in terms of throughput, G
performed better in five locations whereas H performed better in
six locations. The data shows that CDN brokering can be used

8



CDN Brokering WCW’01

D
al

la
s

F
ra

nk
fu

rt

Jo
ha

nn
es

bu
rg

Lo
nd

on

M
ex

ic
o 

C
ity

N
ew

 Y
or

k

P
ho

en
ix

S
eo

ul

S
yd

ne
y

T
ok

yo

W
el

lin
gt

on

A
ve

ra
ge

0

1

2

3

in
it 

tim
e 

(s
ec

)

CDN G
CDN H

(a) Initialization costs, in seconds

D
al

la
s

F
ra

nk
fu

rt

Jo
ha

nn
es

bu
rg

Lo
nd

on

M
ex

ic
o 

C
ity

N
ew

 Y
or

k

P
ho

en
ix

S
eo

ul

S
yd

ne
y

T
ok

yo

W
el

lin
gt

on

A
ve

ra
ge

0

100

200

300

ba
nd

w
id

th
 (

K
B

yt
e/

se
c)

CDN G
CDN H

(b) Bandwidth

Figure 6: Measurements for each CDN in each location

to leverage the strength of both CDNs. Under the assumption
that IDNS redirects each client to the better performing CDN,
the average initial delay would decrease to 0.30 seconds and the
average throughput would increase to 82,122 bytes per second.
Compared to the 50,342 and 52,432 bytes per second each indi-
vidual CDN can achieve, this is a substantial improvement.

As our case study shows, using two real CDNs measured from
eleven locations, CDN brokering may not only provide benefits
in terms of overload protection, cost and fault tolerance, but it
also can provide performance benefits. However, it should be
noted that the case study represents a limited measurement, and
different CDNs and/or client sites will undoubtedly provide dif-
ferent results. Over time we expect to support many more types
of customers using a variety of partner networks, as we further
refine our algorithms and architecture.

6 Related Work

Our content brokering proposal involves the symbiotic coopera-
tion of multiple autonomous CDNs. Two recently announced

efforts also aim at cooperation between autonomous content-
delivering platforms. Content Bridge [6] is a standardization
effort by an alliance of companies. Its goal is to allow coop-
eration between reverse proxy platforms (such as CDNs) and
forward proxy platforms, so that CDNs ensure freshness of the
their content cached by forward proxies, while forward proxies
provide the CDNs with hit statistics of CDNs’ content in return.
The content bridge is a middleware layer between CDNs and
forward proxies that facilitates this type of cooperation. In con-
trast, CDN brokering enables cooperation between CDNs with
the ultimate goal of improving access to their content. Thus, the
two proposals are orthogonal and complimentary.

The Content Alliance [5] is a standardization effort, organized
initially by Cisco, whose goal is to develop standards for inter-
CDN cooperation of the kind exemplified by our CDN brokering
system. We are actively participating in this effort, which incor-
porates many of our ideas.

DNS-based load balancing has been widely used for load dis-
tribution among Web servers or caches; various products in this
area include Alteon’s GSLB [1] and Cisco’s Distributed Direc-
tor [4]. These companies disclose few details about their load

9



CDN Brokering WCW’01

balancing algorithms. Unlike these DNS-based implementa-
tions, CDN brokering uses DNS to load balance among entire
CDNs.

Finally, Shaikh and Tewari [15] consider the problem of mea-
suring the network proximity of client DNS servers with HTTP
clients. This issue obviously has direct relevance to CDNs,
which crucially rely on the assumption that the origins of a DNS
query are indicative of the origins of the corresponding HTTP
request. Our implementation of CDN brokering relies on this as-
sumption as well, since it is also DNS-based. If this assumption
is definitively shown to not hold, it will provide extra motivation
for brokering using alternate mechanisms.

7 Conclusion

Content distribution internetworking is a new area, and the tech-
niques and issues involved are actively being explored by our-
selves and others. Here we have attempted to motivate the need
for CDI: rather than one service trying to be omnipresent, which
is demanding in both capital and manpower, a CDN can leverage
agreements with other networks to provide good performance at
an appropriately low cost. CDN brokering is a form of CDI that
uses DNS outsourcing to permit a specialized DNS server to se-
lect a CDN at the time of hostname resolution.

IDNS, our patent-pending system for CDN brokering, is
the first working example of this functionality of which we are
aware. We have measured the scalability of the IDNS DNS
server and the overhead of adding an extra level of indirection
through the brokerage. We are currently supporting a limited
number of AT&T customers using IDNS.

8 Acknowledgments

We would like to thank Kobus van der Merwe and Zhen Xiao for
reading earlier drafts of the paper and giving us valuable com-
ments. We would also like to thank the anonymous reviewers,
who provided valuable feedback.

References

[1] Alteon Web Systems, Inc. Enhancing web user expe-
rience with global server load balancing White paper.
http://www.alteonwebsystems.com/products/
white_papers/GSLB/index.shtml.

[2] A. Barbir, B. Cain, F. Douglis, M. Green, M. Hofmann, R. Nair,
D. Potter, and O. Spatscheck. Known CDN Request-Routing Mech-
anisms, Feb. 2001. Work in Progress, draft-cain-cdnp-known-
request-routing-01.txt.

[3] B. Cain, P. Rzewski, and N. Robertson. Cross-Network Accounting
for HTTP , Nov. 2000. Work in Progress, draft-rzewski-cnacct-
00.txt.

[4] Cisco Systems, Inc. DistributedDirector. White pa-
per. http://www.cisco.com/warp/public/734/
distdir/dd_wp.htm.

[5] Content Alliance. http://www.content-peering.org.

[6] Content Bridge. http://www.content-bridge.com.

[7] M. Day, B. Cain, and G. Tomlinson. A Model for CDN Peering,
Nov. 2000. Work in Progress, draft-day-cdnp-model-04.txt.

[8] M. Day and D. Gilletti. Content Distribution Network Peering Sce-
narios, Nov. 2000. Work in Progress, draft-day-cdnp-scenarios-
02.txt.

[9] M. Green, B. Cain, G. Tomlinson, and S. Thomas. CDN Peering
Architectural Overview, Nov. 2000. Work in Progress, draft-green-
cdnp-gen-arch-02.txt.

[10] K. L. Johnson, J. F. Carr, M. S. Day, and M. F. Kaashoek. The mea-
sured performance of content distribution networks. In Proceed-
ings of the 5th International Web Caching and Content Delivery
Workshop, May 2000.

[11] B. Krishnamurthy and J. Wang. On network-aware clustering of
Web clients. In Proceedings of ACM SIGCOMM 2000, pages 97–
110, Aug. 2000.

[12] P. V. Mockapetris. RFC 1034: Domain names — concepts and
facilities, Nov. 1987.

[13] R. Nair, D. Gilletti, and J. Scharber. CDN Peering Authentication,
Authorization, and Accounting Requirements, Nov. 2000. Work in
Progress, draft-gilletti-cdnp-aaa-reqs-00.txt.

[14] Y. Rekhter and T. Li. RFC 1771: A Border Gateway Protocol 4
(BGP-4), Mar. 1995.

[15] A. Shaikh and R. Tewari. On the effectiveness of DNS-based
server selection. IBM Research Report RC 21785, IBM Thomas
J. Watson Research Center, 2000.

10


