
Half-Sync/Half-Async

An Architectural Pattern for Efficient and Well-structured Concurrent I/O

Douglas C. Schmidt and Charles D. Cranor
schmidt@cs.wustl.edu and chuck@maria.wustl.edu

Department of Computer Science
Washington University

St. Louis, MO 63130, (314) 935-7538

An earlier version of this paper appeared in a chapter in
the book “Pattern Languages of Program Design 2” ISBN
0-201-89527-7, edited by John Vlissides, Jim Coplien, and
Norm Kerth published by Addison-Wesley, 1996.

Abstract

This paper describes the Half-Sync/Half-Async pattern,
which integrates synchronous and asynchronous I/O models
to support both programming simplicity and execution effi-
ciency in complex concurrent software systems. In this pat-
tern, higher-level tasks use a synchronous I/O model, which
simplifies concurrent programming. In contrast, lower-level
tasks use an asynchronous I/O model, which enhances ex-
ecution efficiency. This pattern is widely used in operating
systems such as UNIX, Mach, Windows NT, and VMS, as well
as other complex concurrent systems.

1 Intent

The Half-Sync/Half-Async pattern decouples synchronous
I/O from asynchronous I/O in a system to simplify concurrent
programming effort without degrading execution efficiency.

2 Motivation

To illustrate the Half-Sync/Half-Async pattern, consider the
software architecture of the BSD UNIX [1] networking sub-
system shown in Figure 1. The BSD UNIX kernel coor-
dinates I/O between asynchronous communication devices
(such as network adapters and terminals) and applications
running on the OS. Packets arriving on communication de-
vices are delivered to the OS kernel via interrupt handlers
initiated asynchronously by hardware interrupts. These han-
dlers receive packets from devices and trigger higher layer
protocol processing (such as IP, TCP, and UDP). Valid pack-
ets containing application data are queued at the Socket layer.
The OS then dispatches any user processes waiting to con-
sume the data. These processes synchronously receive data
from the Socket layer using the read system call. A user
process can make read calls at any point; if the data is not

S
O

C
K

E
T

L
A

Y
E

R

B
S

D

U
N

IX

K
E

R
N

E
L

U
S

E
R

-L
E

V
E

L

P
R

O
C

E
S

S
E

S

SOCKET QUEUES

SYNC USER

PROCESS1

SYNC USER

PROCESS3

SYNC USER

PROCESS2

1, 4: read(data)

3: enqueue (data)

ASYNC

PROTOCOL

PROCESSING

2: interrupt

NETWORK

INTERFACES

Figure 1: BSD UNIX Software Architecture

available the process will sleep until the data arrives from the
network.

In the BSD architecture, the kernel performs I/O asyn-
chronously in response to device interrupts. In contrast,
user-level applications perform I/O synchronously. This sep-
aration of concerns into a “half synchronous and half asyn-
chronous” concurrent I/O structure resolves the following
two forces:

� Need for programming simplicity: Programming an
asynchronous I/O model can be complex because input and
output operations are triggered by interrupts. Asynchrony
can cause subtle timing problems and race conditions when
the current thread of control is preempted by an interrupt
handler. Moreover, interrupt-driven programs require ex-
tra data structures in addition to the run-time stack. These
data structures are used to save and restore state explicitly

1

when events occur asynchronously. In addition, debugging
asynchronous programs is hard since external events occur
at different points of time during program execution.

In contrast, programming applications with a synchronous
I/O model is easier because I/O operations occur at well de-
fined points in the processing sequence. Moreover, programs
that use synchronous I/O can block awaiting the completion
of I/O operations. The use of blocking I/O allows programs
to maintain state information and execution history in a run-
time stack of activation records, rather than in separate data
structures. Thus, there is a strong incentive to use a syn-
chronous I/O model to simplify programming.

� Need for execution efficiency: The asynchronous I/O
model maps efficiently onto hardware devices that are driven
by interrupts. Asynchronous I/O enables communication and
computation to proceed simultaneously. In addition, context
switching overhead is minimized because the amount of in-
formation necessary to maintain program state is relatively
small [2]. Thus, there is a strong incentive to use an asyn-
chronous I/O model to improve run-time performance.

In contrast, a completely synchronous I/O model may be
inefficient if each source of events (such as network adapter,
terminal, or timer) is associated with a separate active object
(such as a process or thread). Each of these active objects
contain a number of resources (such as a stack and a set of
registers) that allow it to block while waiting on its source
of events. Thus, this synchronous I/O model increases the
time and space required to create, schedule, dispatch, and
terminate separate active objects.

3 Solution

To resolve the tension between the need for concurrent
programming simplicity and execution efficiency use the
Half-Sync/Half-Async pattern. This pattern integrates syn-
chronous and asynchronous I/O models in an efficient and
well-structured manner. In this pattern, higher-level tasks
(such as database queries or file transfers) use a synchronous
I/O model, which simplifies concurrent programming. In
contrast, lower-level tasks (such as servicing interrupts from
network controllers) use an asynchronous I/O model, which
enhances execution efficiency. Because there are usually
more high-level tasks than low-level tasks in a system, this
pattern localizes the complexity of asynchronous processing
within a single layer of a software architecture. Communi-
cation between tasks in the Synchronous and Asynchronous
layers is mediated by a Queueing layer.

4 Applicability

Use the Half-Sync/Half-Async pattern when

� A system possesses the following characteristics:

– The system must perform tasks in respond to ex-
ternal events that occur asynchronously, and

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

L
A

Y
E

R
L

A
Y

E
R

A
S

Y
N

C
H

R
O

N
O

U
S

A
S

Y
N

C
H

R
O

N
O

U
S

T

A
S

K

L

A
Y

E
R

T

A
S

K

L

A
Y

E
R

S
Y

N
C

H
R

O
N

O
U

S
S

Y
N

C
H

R
O

N
O

U
S

 T
A

S
K

L

A
Y

E
R

 T
A

S
K

L

A
Y

E
R SSYNCYNC

TASK TASK 11

SSYNCYNC

TASK TASK 33

SSYNCYNC

TASK TASK 22

1, 4: read(data)1, 4: read(data)

3: enqueue(data)3: enqueue(data)

2: interrupt2: interrupt

ASYNCASYNC

TASKTASK

EXTERNALEXTERNAL

EVENT SOURCESEVENT SOURCES

MESSAGE QUEUESMESSAGE QUEUES

Figure 2: The Structure of Participants in the Half-Sync/Half-
Async Pattern

– it is inefficient to dedicate a separate thread of
control to perform synchronous I/O for each source
of external events, and

– the higher-level tasks in the system can be sim-
plified significantly if I/O is performed syn-
chronously.

� One or more tasks in a system must run in a single-
thread of control, while other tasks may benefit from
multi-threading.

– For example, legacy libraries like X windows and
Sun RPC are often non-reentrant. Therefore, mul-
tiple threads of control cannot safely invoke these
library functions concurrently. However, to ensure
quality of service or to take advantages of multiple
CPUs, it may be necessary to perform bulk data
transfers or database queries in separate threads.
The Half-Sync/Half-Async pattern can be used to
decouple the single-threaded portions of an ap-
plication from the multi-threaded portions. This
decoupling enables non-reentrant functions to be
used correctly, without requiring changes to exist-
ing code.

5 Structure and Participants

Figure 2 illustrates the structure of participants in the Half-
Sync/Half-Async pattern. These participants are described
below.

� Synchronous task layer (User processes)

2

– The tasks in this layer perform high-level I/O oper-
ations that transfer data synchronously to message
queues in the Queueing layer. Unlike the Asyn-
chronous layer, tasks in the Synchronous layer are
active objects [3] that have their own run-time
stack and registers. Therefore, they can block
while performing synchronous I/O.

� Queueing layer (Socket layer)

– This layer provides a synchronization and buffer-
ing point between the Synchronous task layer and
the Asynchronous task layer. I/O events processed
by asynchronous tasks are buffered in message
queues at the Queueing layer for subsequent re-
trieval by synchronous tasks (and vice versa).

� Asynchronous task layer (BSD UNIX kernel)

– The tasks in this layer handle lower-level events
from multiple external event sources (such as net-
work interfaces or terminals). Unlike the Syn-
chronous layer, tasks in the Asynchronous layer
are passive objects that do not have their own run-
time stack or registers. Thus, they cannot block
indefinitely on any single source of events.

� External event sources (Network interfaces)

– External devices (such as network interfaces and
disk controllers) generate events that are received
and processed by the Asynchronous task layer.

6 Collaborations

Figure 3 illustrates the dynamic collaboration among partici-
pants in the Half-Sync/Half-Async pattern when input events
arrive at an external event source (output event processing is
similar). These collaborations are divided into the following
three phases:

� Async phase – in this phase external sources of events
interact with the Asynchronous task layer via interrupts
or asynchronous event notifications.

� Queueing phase – in this phase the Queueing layer pro-
vides a well-defined synchronization point that buffers
messages passed between the Synchronous and Asyn-
chronous task layers in response to input events.

� Sync phase – in this phase tasks in the Synchronous
layer retrieve messages placed into the Queueing layer
by tasks in the Asynchronous layer. Note that the pro-
tocol used to determine how data is passed between the
Synchronous and Asynchronous task layers is orthogo-
nal to how the Queueing layer mediates communication
between the two layers.

The Asynchronous and Synchronous layers in Figure 3
communicate in a “producer/consumer” manner by passing

EXTERNAL EVENTEXTERNAL EVENT

PROCESS MSGPROCESS MSG

read(msg)

EXECUTE TASKEXECUTE TASK

ENQUEUE MSGENQUEUE MSG

ExternalExternal
Event SourceEvent Source

AsyncAsync
TaskTask

SyncSync
TaskTask

MessageMessage
QueueQueue

work()

DEQUEUE MSGDEQUEUE MSG

A
S
Y

N
C

A
S
Y

N
C

P
H

A
S

E
P

H
A

S
E

Q
U

E
U

E
IN

G
Q

U
E

U
E

IN
G

P
H

A
S

E
P

H
A

S
E

S
Y

N
C

S
Y

N
C

P
H

A
S

E
P

H
A

S
E

RECV MSGRECV MSG

notification()

read(msg)

work()

enqueue(msg)

Figure 3: Collaboration between Layers in the Half-
Sync/Half-Async Pattern

messages. The key to understanding the pattern is to recog-
nize that Synchronous tasks are active objects. Thus, they
can make blocking read or write calls at any point in
accordance with their protocol. If the data is not yet avail-
able tasks implemented as active objects can sleep until the
data arrives. In contrast, tasks in the Asynchronous layer
are passive objects. Thus, they cannot block on read calls.
Instead, tasks implemented as passive objects are triggered
by notifications or interrupts from external sources of events.

7 Consequences

The Half-Sync/Half-Async pattern yields the following ben-
efits:

� Higher-level tasks are simplified because they are
shielded from lower-level asynchronous I/O. Complex
concurrency control, interrupt handling, and timing is-
sues are delegated to the Asynchronous task layer. This
layer handles the low-level details (such as interrupt
handling) of programming an asynchronous I/O sys-
tem. The Asynchronous layer also manages the interac-
tion with hardware-specific components (such as DMA,
memory management, and device registers).

� Synchronization policies in each layer are decoupled.
Therefore each layer need not use the same concurrency
control strategies. For example, in the single-threaded
BSD UNIX kernel the Asynchronous task layer imple-
ments concurrency control via low-level mechanisms
(such as raising and lowering CPU interrupt levels). In
contrast, user processes in the Synchronous task layer
implement concurrency control via higher-level syn-
chronization constructs (such as semaphores, message
queues, condition variables, and record locks).

� Inter-layer communication is localized at a single point
because all interaction is mediated by the Queueing
layer. The Queueing layer buffers messages passed

3

between the other two layers. This eliminates the com-
plexity of locking and serialization that would occur if
the Synchronous and Asynchronous task layers directly
accessed each other’s memory.

� Performance is improved on multi-processors. The use
of synchronous I/O can simplify programming and im-
prove performance on multi-processor platforms. For
example, long-duration data transfers (such as down-
loading a large medical image from a database) can
be simplified and performed efficiently by using syn-
chronous I/O. One processor can be dedicated to the
thread transferring the data, which enables the instruc-
tion and data cache of that CPU to be associated with
the entire transfer operation.

The Half-Sync/Half-Async pattern has the following draw-
backs:

� A boundary-crossing penalty may be incurred from syn-
chronization, data copying, and context switching over-
head. This overhead typically occurs when data is trans-
ferred between the Synchronous and Asynchronous task
layer via the Queueing layer. In particular, most operat-
ing systems that use the Half-Sync/Half-Async pattern
place the Queueing layer at the boundary between the
user and kernel protection domains. A significant per-
formance penalty may be incurred when crossing this
boundary. For example, the socket layer in BSD UNIX
accounts for a large percentage of the overall TCP/IP
networking overhead [4].

� Asynchronous I/O for higher-level tasks is lacking. De-
pending on the design of system interfaces, it may not be
possible for higher-level tasks to utilize low-level asyn-
chronous I/O devices. Thus, the system I/O structure
may prevent applications from utilizing the hardware ef-
ficiently, even if external devices support asynchronous
overlap of computation and communication.

8 Implementation

This section describes how to implement the Half-Sync/Half-
Async pattern by factoring tasks in the system into
Synchronous and Asynchronous layers that communicate
through a Queueing layer.

8.1 Identify Long-duration Tasks and Imple-
ment Them Using Synchronous I/O

Many tasks in a system can be simplified by allowing them
to perform synchronous I/O. Often, these are long-duration
tasks that transfer large streams of data [5] or perform
database queries that may block for prolonged periods await-
ing responses from servers.

Implement these long-duration tasks using an active object
model [3]. Since active objects have their own run-time stack
and registers they can block while performing synchronous

I/O. Implementing an active object mechanism requires a
method of switching between different threads of control. At
the lowest level, this means having a place to store the current
thread’s hardware state (e.g., the values in all its registers,
including its stack pointer) and load in the state of the new
thread. This functionality is sufficient to implement a non-
premptive threading mechanism with no memory protection.
“User level threads” packages typically provide this type of
functionality.

However, more functionality is required to implement ac-
tive objects as threads and processes in a robust,multi-tasking
operating system. In this case, each thread of control has
its own address space that is managed by the processor’s
memory management unit (MMU). When switching between
threads the new process’s address space info must be loaded
into the MMU. Cache flushing may also be required, espe-
cially with certain types of virtually addressed cache. In
addition to an address space, an OS process often has a “user
identification.” This tells the operating system what access
rights the process has and how much system resources it can
consume.

To prevent a single process from taking over the system
indefinitely, there must be a way to preempt it. Preemption
is generally done with a timer. Periodically (e.g., 1/100 of a
second) the timer generates an clock interrupt. During this
interrupt the operating systems checks to see if the currently
running process needs to be preempted. If so, it saves the
process’s state and loads the state of the next process to run.
When the interrupt returns, the new process will be running.

8.2 Identify Short-duration Tasks and Imple-
ment Them Using Asynchronous I/O

Certain tasks in a system cannot block for prolonged periods
of time. Often, these tasks run for a short-duration and inter-
act with external sources of events (such as graphical user in-
terfaces or interrupt-drivenhardware network interfaces). To
increase efficiency and ensure response-time, these sources
of events must be serviced rapidly without blocking.

Implement these short-duration tasks using a reactive, pas-
sive object model [6]. Passive objects borrow their thread of
control from elsewhere (such as the caller or a separate in-
terrupt stack). Therefore, these tasks must use asynchronous
I/O since they cannot block for long periods of time. The
primary motivation for not blocking is to ensure adequate
response time for other system tasks (such as high-priority
hardware interrupts like clock timers).

There are several ways to develop a well-structured frame-
work for asynchronous I/O:

� Demultiplex events using the Reactor pattern – The Re-
actor pattern [6] manages a single-threaded event loop
that supports the demultiplexing and dispatching of mul-
tiple event handlers, which are triggered concurrently
by multiple events. This pattern combines the simplic-
ity of single-threaded event loops with the extensibility

4

offered by object-oriented programming. The Reac-
tor pattern serializes event handling within a process or
thread and often eliminates the need for more compli-
cated threading, synchronization, or locking.

A Reactor may be implemented to run atop synchronous
and/or asynchronous sources of events. The behavior
it provides to its event handlers, however, is distinctly
asynchronous. Thus, a handler cannot block without
disrupting the response time for other sources of events.

� Implement a multi-level interrupt scheme – These im-
plementations allow non-time critical processing to be
interrupted by higher-priority tasks (such as hardware
interrupts) if higher priority events must be handled be-
fore the current processing is done. Data structures used
by the Asynchronous layer must be protected (e.g., by
raising the processor priority or using semaphores) to
prevent interrupt handlers from corrupting shared state
while they are being accessed.

For example, in an operating system kernel the need for
a multi-level interrupt scheme is strongly influenced by
the hardware interrupt service time. If this time can be
reduced significantly it may be more efficient to perform
all processing at the hardware interrupt level to avoid
the overhead of an extra software interrupt. Implemen-
tations of TCP/IP have reduced inbound packet protocol
processing overhead to the point where the cost of the
two-level interrupt scheme dominates the overall packet
processing time.

8.3 Implement a Queueing Layer

The Queueing layer provides a synchronization point for
buffering messages exchanged by tasks in the Asynchronous
and Synchronous layers. The following are several topics
that must be addressed when designing the Queueing layer:

� Concurrency control – If tasks in the Asynchronous and
Synchronous layer execute concurrently (either due to
multiple CPUs or hardware interrupts) it is necessary to
ensure that concurrent access to shared queue state is
serialized to avoid race conditions. Thus, the Queue-
ing layer is typically implemented using concurrency
control mechanisms such as semaphores, mutexes, and
condition variables. These mechanisms ensure that mes-
sages can be inserted and removed to and from the
Queueing layer without corrupting internal queue data
structures.

� Layer-to-layer flow control – Systems cannot devote an
unlimited amount of resources to buffer messages in the
Queueing layer. Therefore, it is necessary to regulate the
amount of data that is passed between the Synchronous
and Asynchronous layers. For example, layer-to-layer
flow control prevents Synchronous tasks from flooding
the Asynchronous layer with more messages than can
be transmitted on network interfaces.

Tasks in the Synchronous layer can block. Therefore,
a common flow control policy is to put a task to sleep
if it produces and queues more than a certain amount
of data. When the Asynchronous task layer drains the
queue below a certain level the Synchronous task can
be awakened to continue. In contrast, tasks in the Asyn-
chronous layer cannot block. Therefore, if they produce
an excessive amount of data a common flow control pol-
icy is to have the Queueing layer discard messages. If
the messages are associated with a reliable connection-
oriented network protocol the sender will eventually
timeout and retransmit.

� Data copying overhead – Some systems (such as BSD
UNIX) place the Queueing layer at the boundary be-
tween the user and kernel protection domains. A com-
mon way to decouple these protection domains is to copy
messages from user to kernel and vice versa. However,
this increases system bus and memory load, which may
degrade performance significantly when large messages
are moved across domains.

One way to reduce data copying is to allocate a region
of memory that is shared between the Synchronous task
layer and the Asynchronous task layer [7]. This allows
the two layers to exchange data directly, without copying
data in the Queueing layer. For example, [8] presents an
I/O subsystem that minimizes boundary-crossing penal-
ties by using polled interrupts to improve the handling
of continuous media I/O streams. This approach also
provides a buffer management system that allows effi-
cient page remapping and shared memory mechanisms
to be used between user processes, the kernel, and its
devices.

9 Sample Code

This section illustrates examples of the Half-Sync/Half-
Async pattern in two different parts of the BSD UNIX op-
erating system [1]. These examples illustrate how the Half-
Sync/Half-Async pattern is used by the BSD kernel to enable
user processes to operate synchronously, while ensuring the
kernel operates asynchronously. The first example illustrates
how this pattern is used in the networking subsystem to input
data through the TCP/IP protocol stack over Ethernet. The
second example illustrates how this pattern is used in the
file subsystem to implement interrupt-driven output for disk
controllers.

9.1 BSD Networking Subsystem Example

This example illustrates how the Half-Sync/Half-Async pat-
tern is used to structure the synchronous invocation of aread
system call, asynchronous reception and protocol processing
of data arriving on a network interface, and synchronous
completion of the read call. Figure 1 illustrates the par-
ticipants and structure of this pattern in BSD UNIX. For a

5

comprehensive explanation of the BSD UNIX networking
subsystem see [9].

9.1.1 Synchronous Invocation

Consider a user process that creates a passive-mode TCP
stream socket, accepts a connection, and receives TCP data
from the connected socket descriptor. To the user process,
the read system call on the connection appears to be a
synchronous operation, i.e., the process makes the call and
the data is returned. However, many steps occur to implement
this system call. When the read call is issued it traps into
the kernel and gets vectored into the network socket code
synchronously. The thread of control ends up in the kernel’s
soreceive function, which performs the Half-Sync part
of the processing. The soreceive function is responsible
for transfering the data from the socket queue to the user. It
must handle many types of sockets (such as datagram sockets
and stream sockets). A simplified view of whatsoreceive
does is shown below, with emphasis on the boundary between
the Sync and Async layers:

/* Receive data from a socket. */

int soreceive (...)
{
for (;;) {
sblock (...); /* lock socket recv queue */

/* mask off network interrupts to protect queue */
s = splnet ();

if (not enough data to satisfy read request) {
sbunlock (...); /* unlock socket queue */

/***** Note! *****
The following call forms the boundary
between the Sync and Async layers. */

sbwait (...); /* wait for data */
splx (s); /* drop splnet */

}
else
break;

}

splx (s); /* drop splnet */

/* copy data to user’s buffer at normal priority */
uiomove (...);

s = splnet (); /* mask off network interrupts */

sbunlock (...); /* unlock socket queue */
splx (s); /* restore spl */

return (error code); /* returns 0 if no error */
}

The code above illustrates the boundary between the syn-
chronous user layer process and the asynchronous kernel
layer. Although the user process can sleep while waiting
for data, the kernel cannot be suspended because other user
processes and devices in the system may require its services.

There are several ways the user’s read request is handled by
soreceive, depending on the characteristics of the socket
and the amount of data in the socket queue:

� Completely synchronous – If the data requested by the
user is in the socket queue it is copied out immediately
and the operation completes synchronously.

� Half-synchronous and half-asynchronous – If the data
requested by the user has not yet arrived the kernel will
call thesbwait function to put the user process to sleep
until the requested data arrives.

Once sbwait puts the process to sleep, the OS scheduler
will context switch to another process that is ready to run.
To the original user process, however, the read system call
appears to execute synchronously. When packet(s) contain-
ing the requested data arrive the kernel will process them
asynchronously as described in Section 9.1.2. When enough
data has been placed in the socket queue to satisfy the user’s
request the kernel will wakeup the original process, which
completes the read system call.

9.1.2 Asynchronous Reception and Protocol Processing

The Half-Async part of the user’s read request starts with
a packet arriving on a network interface, which causes a
hardware interrupt. All inbound packet processing is done
in the context of an interrupt handler. It is not possible to
sleep during an interrupt because there is no UNIX process
context and no separate thread of control. Therefore, an
interrupt handler must borrow the caller’s thread of control
(i.e., its stack and registers). The BSD UNIX kernel uses
this strategy to borrow the thread of control from interrupt
handlers and from user processes that perform system calls.

Most interrupt-driven computers assign priority levels to
the interrupts. For example, on a SPARC there are fifteen
interrupt levels with level one being the lowest level and
level fifteen being the highest level. Other processors have
different levels (e.g., the Motorola 68030 has seven interrupt
levels). Under BSD UNIX, processor-specific interrupt lev-
els are assigned machine independent symbolic names called
SPL levels (the term SPL originated in the PDP-11 days
of UNIX). For example, the highest network hardware in-
terrupt level is called SPLIMP, the clock interrupt is called
SPLCLOCK, and the highest possible interrupt level is called
SPLHIGH. For each of these levels there is a corresponding
function of the same name that sets the processor interrupt
level to that value. Thus, the splimp function is called
to block out all network hardware level interrupts. All the
spl* functions will return the previous processor priority
level, which represents what the priority should be restored
to when the operation completes.

Conventional versions of BSD UNIX use a two-level in-
terrupt scheme to handle packet processing. Hardware criti-
cal processing is done at a high priority (SPLIMP) and less
time critical software processing is done at a lower priority
level (SPLNET). This two-level interrupt scheme prevents
the overhead of software protocol processing from delaying
the servicing of other hardware interrupts. The two-level
BSD UNIX packet processing scheme is divided into hard-
ware specific processing and protocol processing. When a

6

packet arrives on a network interface it causes an interrupt at
that interface’s interrupt priority. All networking interfaces
have priority of

�
SPLIMP.

The operating system services the hardware interrupt and
then enqueues the packet on the input queue in the protocol
layer (such as the IP protocol). A network software interrupt
is then scheduled to service that queue at a lower priority
(e.g., SPLNET). Once the network hardware interrupt is ser-
viced, the rest of the protocol processing is done at the lower
priority level as long as there are no other higher level in-
terrupts pending. The BSD kernel is carefully designed to
allow hardware interrupts to occur during a software interrupt
without losing data or corrupting buffers.

As an example, consider a host with an AMD LANCE Eth-
ernet NIC chip. The device driver for this chip is called “le”
(for “LANCE Ethernet”). On packet arrival the lerint
function is called from the interrupt handler. It’s job is to ac-
knowledge and clear the interrupt. It then extracts the packet
from the network interface and copies it into memory buffers
called mbufs, as follows:

int lerint (...)
{
/* perform hardware sanity checks */
while (inbound buffers to process) {

/* get length and clear interrupt ... */
/* read the packet into mbufs */

ether_input (interface, ether_type, packet);
/* free buffer */

}
}

The mbufs are then handed off from lerint to the follow-
ing Ethernet function called ether input:

int
ether_input (char *intf, int etype, struct mbuf *packet)
{
switch (etype) {
case ETHERTYPE_IP:

/* schedule network interrupt */
schednetisr (NETISR_IP);
inq = &ipintrq;
break;

/* etc... */
}

s = splimp ();

/* Try to insert the packet onto the IP queue. */

if (IF_QFULL (inq)) {
/* queue full, drop packet */
IF_DROP (inq);
m_freem (packet);

} else
/* queue packet for net interrupt */
IF_ENQUEUE (inq, m);

splx (s);
}

Each network protocol has a packet queue associated with
it (e.g., the IP packet queue). The ether input function
first determines which network protocol is being used and
puts the packet on the correct queue. It then arranges for a
network software level interrupt to occur. This interrupt will

occur at the lower priority SPLNET level. At this point the
hardware interrupt has been handled and the interrupt service
routine exits.

Once the hardware interrupt is done a network software
interrupt occurs at the SPLNET level (provided there are no
higher level interrupts pending). If the inbound packet is an IP
packet the kernel calls the IP interrupt routine (ipintr). IP
protocol processing (such as header parsing, packet forward-
ing, fragmentation, and reassembly) is done in this routine.
If the packet is destined for a local process then it is handed
off to the transport protocol layer. The transport layer per-
forms additional protocol processing (such as TCP segment
reassembly and acknowledgements). Eventually, the trans-
port layer appends the data to the receive socket queue and
calls sbwakeup. This call wakes up the original process
that was sleeping in soreceive waiting for data on that
socket queue. Once this is done, the software interrupt is
finished processing the packet.

The following code illustrates the general logic of the
thread of control running from ipintr, up through
tcp input, to sowakeup, which forms the boundary
between the Async and Sync layers. The first function is
ipintr, which handles inbound IP packets:

int ipintr (...)
{
int s;
struct mbuf *m;

/* loop, until there are no more packets */
for (;;) {

s = splimp ();
IF_DEQUEUE (&ipintrq, m); /* dequeue next packet */
splx(s);
if (m == 0) return; /* return if no more packets */

if (packet not for us) {
/* route and forward packet */

} else {
/* packet for us... reassemble */

/* call protocol input, which is tcp_input() */
(*inetsw[ip_protox[ip->ip_p]].pr_input)(m, hlen);

}
}

}

Since our current example involves a TCP/IP packet, the
“protocol switch” inetsw invokes the tcp input func-
tion, which handles an inbound tcp packet:

int tcp_input (m, iphlen)
{
/* lots of complicated protocol processing... */

/* We come here to pass data up to the user */
sbappend (&so->so_rcv, m);
sowakeup((so), &(so)->so_rcv);
/* ... */

}

The sowakeup function wakes up the user process that was
asleep in readwaiting for the packet to arrive. As discussed
in the following subsection, this function forms the boundary
between the Async and Sync layers.

7

9.1.3 Synchronous Completion

When the data is appended to the socket queue, the
sowakeup is invoked if a user process is asleep waiting
for data to be placed into its buffer.

void sowakeup (so, sb)
{
/* ... */
if (a user process is asleep on this queue) {

/***** Note! *****
The following call forms the boundary
between the Async and Sync layers. */

wakeup ((caddr_t) &sb->sb_cc);
}

}

When a process goes to sleep there is a “handle” associated
with that process. To wake up a sleeping process thewakeup
call is invoked on that handle. A process waiting for an event
will typically use the address of the data structure related to
that event as its handle. In the current example, the address of
the socket receive queue (sb->sc cc) is used as a handle.

If there are no processes waiting for data on a socket queue
nothing interesting will happen. However, in the example
shown in Section 9.1.1, the original process was sleeping in
soreceive waiting for data. The kernel will wake up this
process in the soreceive function, which loops back to
check if enough data has arrived to satisfy the read request.
If all the data requested by the user has arrived soreceive
will copy the data to the user’s buffer and the system call will
return.

To the user process the read call appeared to be syn-
chronous. However, this was an illusion supported by the
Half-Sync/Half-Async pattern. In particular, asynchronous
processing and context switching were performed while the
process was sleeping. Note that the kernel never blocks and
is always doing something, even if that something is running
an “idle” process.

9.2 Disk Controller Example

This example illustrates another example of the Half-
Sync/Half-Async pattern in the context of the BSD UNIX file
subsystem. The previous example illustrates how the pattern
is used to input data from the Ethernet interface, through the
TCP/IP protocol stack, and up to a user process. This exam-
ple illustrates how the pattern is used to output data from a
user process, through the BSD UNIX raw I/O subsystem, to
a disk.

There are two ways to access UNIX storage devices such
as disks. One is through their block-special devices in/dev,
the other is through their character-special devices. Accesses
through the block-special devices go through a layer of soft-
ware that buffers disk blocks. This buffering takes advantage
of the locality of data references. In contrast, access through
the character-special device (called “raw” I/O) bypasses the
buffering system and directly accesses the disk for each I/O
operation. Raw I/O is useful for checking the integrity of a

filesystem before mounting it, or for user-level databases that
have their own buffering schemes.

9.2.1 Synchronous Invocation

If a process does an open on a character-special file (e.g.,
/dev/rdk0a) and then does a write, the thread of control
will end up in the device driver’s write entry point. This
performs the Half-Sync part of the processing. Most raw disk
devices have a write entry point that references a global
raw I/O routine stored in the cdevsw vector. The following
illustrates this entry:

/* Do a write on a device for a user process. */
int raw_write (dev_t dev, struct uio *uio)
{
return physio (cdevsw[major(dev)].d_strategy,

(struct buf *) NULL,
dev, B_WRITE, minphys, uio);

}

This entry point is a synchronous redirect into physio,
which is a routine that does physical I/O on behalf of a user
process. Physical I/O writes directly from the raw device
to user buffers, bypassing the buffer cache. The physio
routine is implemented as follows:

int
physio (int (*strategy)(),

struct buf *bp,
dev_t dev,
int flags,
u_int (*minphys)(),
struct uio *uio);

{
struct iovec *iovp;
struct proc *p = curproc;
int error, done, i, nobuf, s, todo;

/* ... */

/* read and write, from above */
flags &= B_READ | B_WRITE;

bp->b_flags = B_BUSY | B_PHYS | B_RAW | flags;

/* call driver’s strategy to start the transfer */
(*strategy) (bp);

/***** Note! *****
The following call forms the boundary
between the Sync and Async layers. */

while ((bp->b_flags & B_DONE) == 0)
/* Wait for the transfer to complete */
tsleep ((caddr_t) bp, PRIBIO + 1, "physio", 0);

/* ... */
}

The physio routine is given a user buffer, a device, and
that device’s strategy routine. The strategy routine’s job
is to initiate a read or write operation on a buffer and re-
turn immediately. Because the pointer to the user’s buffer
is provided by the user process, physio must first validate
the buffer’s address. Once the buffer has been validated it is
encapsulated in a buf structure. The flags in the buf struc-
ture are set to indicate if this is a read or a write operation.

8

The flags are also set to indicate that this is a raw I/O oper-
ation. Once the buf structure is set up, it is passed to the
device-specific strategy routine. The strategy rou-
tine schedules the I/O operation and returns. Next, physio
sleeps until the I/O operation is done.

9.2.2 Asynchronous Processing

Both buffered and raw I/O requests enter the device driver
synchronously via the device’s strategy routine:

void strategy (struct buf *bp)
{
/* ... */

s = splbio (); /* protect the queues */

/* sort the buffer structure into the
driver’s queue (e.g., using disksort()) */

if (drive is busy) { splx (s); return; }

/* flow control is here.... if the
drive is busy the request stays in the queue */

/* start first request on the queue */

/* done! */

splx (s);
return;

}

The strategy routine is designed to be general so that
most device I/O can be routed through this interface (the
exception being some ioctl calls that perform control op-
erations on a device such as formatting a cylinder on a disk).
The bookkeeping information required to store state informa-
tion during the asynchronous I/O is stored in a data structure
accessible to the driver. The example above assumes that
the driver only handles one request at a time. It is possible
to have a device that handles multiple requests at a time. In
that case, multiple lists would keep track of which buffers are
active and which are waiting for I/O.

9.2.3 Synchronous Completion

A hardware interrupt is generated by disk controller when
the write request completes. This triggers an interrupt rou-
tine that ties the Asynchronous task layer back into the Syn-
chronous task layer, as follows:

int intr (void *v)
{
struct buf *bp;

/* get current request into "bp" */

/***** Note! *****
The following ties the Async layer back
into the Sync layer. */

biodone (bp); /* Wakeup the sleep in physio(). */

/* start next request on queue */

return (1); /* done */
}

The interrupt function services and clears the hardware in-
terrupt. This involves looking in the driver’s state table to
determine which I/O request has completed. The I/O request
is represented by a buf structure. Once the buf structure
has been identified the biodone function is called to signal
the higher level kernel software that the write request is
complete. This causes the sleeping process to return from
tsleep. The interrupt function must also start any queue’d
write requests if necessary.

10 Variations

The conventional form of the Half-Sync/Half-Async pattern
for input uses “push-driven” I/O from the Asynchronous task
layer to the Queueing layer and “pull-driven” I/O from the
Synchronous task layer to the Queueing layer. These roles
are reversed for output. The following variations appear in
some systems:

� Combining asynchronous notificationwith synchronous
I/O – it is possible for the Synchronous task layer to
be notified asynchronously when data is buffered at the
Queueing layer. This is how signal-driven I/O is imple-
mented by the UNIX SIGIO mechanism. In this case,
a signal is used to “push” a notification to higher-level
user processes. These processes then useread to “pull”
the data synchronously from the queueing layer.

� Spawning synchronous threads on-demand from asyn-
chronous handlers – Another way to combine asyn-
chronous notification with synchronous I/O is to spawn
a thread on-demand when an asynchronous event oc-
curs. I/O is then performed synchronously in the new
thread. This approach ensures that the resources de-
voted to I/O tasks are a function of the number of work
requests being processed in the system.

� Providing asynchronous I/O to higher-level tasks –
Some systems extend the preceding model still fur-
ther by allowing notifications to push data along to the
higher-level tasks. This approach is used in the extended
signal interface for UNIX System V Release 4. In this
case, a buffer pointer is passed along with the signal han-
dler function. Windows NT supports a similar scheme
using overlapped I/O and I/O completion ports [10]. In
this case, when an asynchronous event completes an
overlapped I/O structure contains an indication of the
event that completed, along with the associated data.

� Providing synchronous I/O to lower-level tasks – Single-
threaded operating systems (such as BSD UNIX) usually
support a hybrid synchronous/asynchronous I/O model
only for higher-level application tasks. In these systems,
lower-level kernel tasks are restricted to asynchronous
I/O. Multi-threadedsystems permit synchronous I/O op-
erations in the kernel if multiple wait contexts are sup-
ported via threads. This is useful for implementing
polled interrupts, which reduce the amount of context

9

switching for high-performance continuous media sys-
tems by dedicating a kernel thread to poll a field in
shared memory at regular intervals [8].

If the Asynchronous task layer possesses its own thread
of control it can run autonomously and use the Queueing
layer to pass messages to the Synchronous task layer.
Micro-kernel operating systems typically use this de-
sign. The micro-kernel runs as a separate process that
exchanges messages with user processes [11].

11 Known Uses
� The BSD UNIX networking subsystem [1] and the

original System V UNIX STREAMS communication
framework [12] use the Half-Sync/Half-Async pattern
to structure the concurrent I/O architecture of user pro-
cesses and the OS kernel. All I/O in these kernels is
asynchronous and triggered by interrupts. The Queue-
ing layer is implemented by the Socket layer in BSD
and by STREAM heads in System V STREAMS. I/O
for user processes is synchronous. Most UNIX applica-
tions are developed as user processes that call the syn-
chronous higher-level read/write interfaces. This
design shields developers from the complexity of asyn-
chronous OS handled by the kernel. There are provi-
sions for notifications (via the SIGIO signal) that asyn-
chronously trigger synchronous I/O.

� The multi-threaded version of Orbix 1.3 (MT-Orbix)
[13] uses several variations of the Half-Sync/Half-
Async pattern to dispatch CORBA remote operations in
a concurrent server. In the Asynchronous layer of MT-
Orbix a separate thread is associated with each HAN-
DLE that is connected to a client. Each thread blocks
synchronously reading CORBA requests from the client.
When a request is received it is formatted and then en-
queued at the Queueing layer. An active object thread
in the Synchronous layer then wakes up, dequeues the
request, and processes it to completion by performing
an upcall on the CORBA object implementation.

� The Motorola Iridium system uses the Half-Sync/Half-
Async pattern in an application-level Gateway that
routes messages between satellites and ground con-
trol stations [14]. The Iridium Gateway implements
the Half-Sync/Half-Async pattern with the ADAP-
TIVE Service eXecutive (ASX) framework [15]. The
Reactor [6] class category from the ASX frame-
work implements an object-oriented demultiplexing
and dispatching mechanism that handles events asyn-
chronously. The ASX Message Queue class imple-
ments the Queueing layer, and the ASX Task class im-
plements active objects in the Synchronous task layer.

� The Conduit communication framework [16] from the
Choices OS project [17] implements an object-oriented
version of the Half-Sync/Half-Async pattern. User
processes are synchronous active objects, an Adapter

Conduit serves as the Queueing layer, and the Conduit
micro-kernel operates asynchronously.

12 Related Patterns
� The Synchronous task layer uses the Active Object pat-

tern [3].
� The Asynchronous task layer may use the Reactor pat-

tern [6] to demultiplex events from multiple sources of
events.

� The Queueing layer provides a Facade [18] that simpli-
fies the interface to the Asynchronous task layer of the
system.

� The Queueing layer is also a Mediator [18] that coordi-
nates the exchange of data between the Asynchronous
and Synchronous task layers.

Acknowledgements

We would like to thank Lorrie Cranor and Paul McKenney
for comments and suggestions for improving this paper.

References
[1] S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The

Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[2] D. C. Schmidt and T. Suda, “Measuring the Performance of
Parallel Message-based Process Architectures,” in Proceed-
ings of the Conference on Computer Communications (INFO-
COM), (Boston, MA), pp. 624–633, IEEE, April 1995.

[3] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Proceed-
ings of the 2

���
Annual Conference on the Pattern Languages

of Programs, (Monticello, Illinois), pp. 1–7, September 1995.

[4] N. C. Hutchinson and L. L. Peterson, “The x-kernel: An Ar-
chitecture for Implementing Network Protocols,” IEEE Trans-
actions on Software Engineering, vol. 17, pp. 64–76, January
1991.

[5] D. C. Schmidt, T. H. Harrison, and E. Al-Shaer, “Object-
Oriented Components for High-speed Network Program-
ming,” in Proceedings of the 1

���
Conference on Object-

Oriented Technologies and Systems, (Monterey, CA),
USENIX, June 1995.

[6] D. C. Schmidt, “Reactor: An Object Behavioral Pattern for
Concurrent Event Demultiplexing and Event Handler Dis-
patching,” in Pattern Languages of Program Design (J. O.
Coplien and D. C. Schmidt, eds.), Reading, MA: Addison-
Wesley, 1995.

[7] P. Druschel and L. L. Peterson, “Fbufs: A High-Bandwidth
Cross-Domain Transfer Facility,” in Proceedings of the 14

���

Symposium on Operating System Principles (SOSP), Dec.
1993.

[8] C. Cranor and G. Parulkar, “Design of Universal Continuous
Media I/O,” in Proceedingsof the 5th International Workshop
on Network and Operating Systems Support for Digital Au-
dio and Video (NOSSDAV ’95), (Durham, New Hampshire),
pp. 83–86, Apr. 1995.

10

[9] W. R. Stevens, TCP/IP Illustrated, Volume 2. Reading, Mas-
sachusetts: Addison Wesley, 1993.

[10] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[11] D. L. Black, “Scheduling Support for Concurrency and Par-
allelism in the Mach Operating System,” IEEE Computer,
vol. 23, pp. 23–33, May 1990.

[12] D. Ritchie, “A Stream Input–Output System,” AT&T Bell Labs
Technical Journal, vol. 63, pp. 311–324, Oct. 1984.

[13] C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

[14] D. C. Schmidt, “A Family of Design Patterns for Application-
level Gateways,” The Theory and Practice of Object Systems
(Special Issue on Patterns and Pattern Languages), vol. 2,
no. 1, 1996.

[15] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6
� �

USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[16] J. M. Zweig, “The Conduit: a Communication Abstraction in
C++,” in Proceedings of the 2

���
USENIX C++ Conference,

pp. 191–203, USENIX Association, April 1990.

[17] R. Campbell, N. Islam, D. Raila, and P. Madany, “Designing
and Implementing Choices: an Object-Oriented System in
C++,” Communications of the ACM, vol. 36, pp. 117–126,
Sept. 1993.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

11

