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Abstract

We are approaching a point in time when it will be infeasible to catalog and query data after it has been generated. This trend
has fueled research on in-situ data processing (i.e. operating on data as it is streamed to storage). One important example of
this approach is in-situ data indexing. Prior work has shown the feasibility of indexing at scale as a two-step process: first by
partitioning data by key across CPU cores, and then by having each core produce indexes on its subset as data is persisted.
Online partitioning requires that the data be shuffled over the network so that it can be indexed and stored by the responsible core.
This is becoming more costly as new processors emphasize parallelism instead of individual core performance that is crucial for
processing network events. In addition to indexing, scalable online data partitioning is also useful in other contexts such as efficient
compression and load balancing.

We present FilterKV, a data management scheme for faster online data partitioning of key-value (KV) pair data. FilterKV reduces
the amount of data shuffled over the network by: (a) moving KV pairs quickly off the network to storage, and (b) using an extremely
compact representation to represent each KV pair in the communication occurring over the network. We demonstrate FilterKV on
the LANL Trinity cluster, and show that it can reduce total write time (including partitioning overhead) by up to 1.9-3.0x across
4096 processor cores.






1 Introduction

The exponential growth of data continues unabated. At the same time, access times for capacity storage
hard disks and flash drives remain almost constant year-to-year. An emerging reality we need to confront is
that we are fast approaching a point in time when it will be infeasible to query all the data we are generating
in order to extract intelligence [18, 56, 55, 40]. Fortunately, computational power, as defined in FLOPS,
continues to increase in each cluster [47, 5, 33]. This has led the research community to move towards
performing computation on data in-situ, i.e., as it streams to storage [2].

One example of such computation in the scope of our work is the in-situ generation of data indexes
[68]. In-situ data indexing is used to trade off computational power for data access speed. Recent work has
demonstrated that in-situ data indexing can be performed at the scale of hundreds of thousands of CPU cores
[69], but only after partitioning the data on-the-fly based on a given key. In addition to indexing, online data
partitioning of key-value (KV) pairs is also useful in other contexts such as compression and load balancing
while both writing and reading data.

The increase in computational power observed in modern clusters often comes from increasing paral-
lelism at the cost of individual core performance [45]. GPUs and manycore CPUs [53] that opt for more
lower-frequency cores per die are becoming prevalent across the industry and in modern supercomputers
[47, 5]. This is bad news for network performance as many operations depend on the performance of indi-
vidual cores [23]. We have found that state-of-the-art Network Interface Cards (NICs) from Intel, Mellanox,
and Cray only expose one interrupt queue to the Operating System (OS) [1, 29, 21]. To achieve high ef-
ficiency, High Performance Computing (HPC) networks typically have communication bypass kernels and
allow applications direct access to the NIC. Even so, communication performance is a function of how fast
CPUs can process network events such as software tag matching. Library code that accesses NIC buffers
directly can only poll as fast as the cores will let it. This suggests that the number of Remote Procedure Calls
(RPCs) executed per time unit will be reduced compared to current, high-frequency multicore CPUs. As
we show in Section 2, our experiments with multicore Intel Haswell and manycore Intel Knight’s Landing
(KNL) CPUs show a 3x difference in bandwidth and a 4x difference in latency. The impact this will have on
application performance will increase with the number of RPCs the application performs.

To reduce the number of RPCs sent across the network, a trivial optimization is to batch multiple KV
pairs within the payload of one RPC. Assuming the size of the payload is fixed, online data partitioning
efficiency then depends on the amount of data exchanged. We present FilterKV, a data management scheme
that reduces the amount of data moved through the network when performing online data partitioning. The
key idea behind our approach is to persist each KV pair to local or shared storage directly, moving it quickly
off the network. Then partitioning is performed on a compact representation of the KV pairs. The compact
KV pair representation consists of a prefix derived from the key and the ID of the process that generated
the KV pair. This representation is more compact than previous state-of-the-art work that moves keys and
pointers to data [51, 41].

We demonstrate FilterKV on the Los Alamos National Lab’s (LANL) Trinity cluster across 4096 CPU
cores. Our evaluation is based on real HPC simulation workloads that periodically persist their in-memory
state to storage [7, 13, 12, 32]. We partition all of this data in-situ and index it as it is persisted to storage.
In practice, this means that our approach is tailored to applications with bursts of I/O activity where a
partitioning can be decided before moving data in order to guarantee that each partition receives roughly
the same load. The reason we consider HPC simulations an interesting use case is because they routinely
exhibit extreme entropy in the way they generate keys. This means that our work makes no assumptions on
the order in which keys are generated by any process. Furthermore, FilterKV can work for KV pair sizes
ranging from tiny to large. We show that compared to moving entire KV pairs, FilterKV can reduce total
write time by up to 3x across 4096 KNL CPU cores depending on both available network bandwidth and
available underlying storage bandwidth. Compared to the state-of-the-art scheme that moves only keys and



Machine BF Bytes

World Rank Name (Organization) CPU Cores b2  bl0
6 Trinity (LANL) 979,072 3.40 2.98
12 Cori (NERSC) 622,336 3.28 2.87
13 Nurion (KISTI) 570,020 326 2.84
14 Oakforest-PACS (JCAHPC) 556,104 326 2.84
16 Tera (CEA) 561,408 326 2.84
17 Stampede2 (TACC) 367,024 3.15 2.73
19 Marconi (CINECA) 348,000 3.13 272
24 Theta (ANL) 280,320 3.08 2.66

Table 1: Most powerful supercomputers that consist entirely, or in part, of manycore processors. Data from
top500.org. We also show for each machine the number of Bloom filter (BF) bytes we need to budget per
key in order to bound the number of data partitions per query per key to 2 (b2) or 10 (b10). These numbers
will be explained in Section 4.

data pointers, we can also reduce total write time by up to 1.9x, with a negligible increase in query latency.

The remainder of the paper is organized as follows. In Section 2 we provide results that motivate the
need for a more compact data management scheme. In Section 3 we present the design of FilterKV. Sec-
tion 4 presents FilterKV implementation details and examines the performance of different data partitioning
schemes. Section 5 presents our evaluation of FilterKV compared to the state of the art. Finally, we present
related work in Section 6 and conclude.

2 Motivation

As we increase the computational power, or FLOPS, of the machines we build [25, 5], being able to effi-
ciently use energy becomes increasingly important. This need has led to the rising popularity of manycore
processors [53]. Compared with traditional multicore processors, manycore processors feature more CPU
cores but with each core spinning in a lower frequency and optimized less extensively for single-thread
performance (so less reorder buffers or branch predictors and more cores). Because power consumption
decreases approximately quadratically as CPU frequency decreases, machines equipped with manycore pro-
cessors are able to produce the same amount of computing bandwidth using much less power. As Table 1
shows, there has been a growing number of supercomputers built, partially or entirely, using manycore
processors, such as the Trinity computer [34] at LANL and the Theta computer [6] at ANL.

While massive manycore platforms are good for high levels of parallel processing, single-threaded
request handlers executed at critical regions are no longer fast enough to meet latency targets [45]. Inter-
process data communication is one victim of this tradeoff, and our work is largely motivated by the impact
of this processor architecture trend.

To demonstrate the impact of modern manycore processors on inter-process data communication, we
developed an RPC benchmark program [43]. It uses the Mercury RPC framework [54] and libfabric [28] to
enable communication over different low-level network transports including TCP, RDMA, and other vendor-
specific APIs such as the Cray’s GNI API. Using this benchmark we ran tests on the Trinity computing
platform at LANL and Theta at ANL. Both are Cray machines using the ARIES interconnect [1]. Trinity
consists of two types of compute nodes using either a traditional Intel Xeon multicore processor (Haswell)
or an 1.4 GHz Intel Xeon Phi manycore processor (KNL) [53]. All Theta compute nodes use 1.3 GHz
KNL processors. Our test evaluates each of the 3 processor types. Test runs consist of a sender and a
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Figure 1: Results from LANL Trinity and ANL Theta comparing RPC performance between a multicore
processor (Intel Haswell) and two manycore processors (Intel KNL). All RPC communication is handled by
the Mercury RPC framework using Cray’s GNI API via libfabric. We compare latency and bandwidth. For
latency tests, we vary RPC message size from 8 to 64K bytes and distinguish two RPC modes: blocking
and polling. For bandwidth tests, we use the blocking RPC mode, and vary PPN from 1 to 64, with RPC
message size fixed at 16K bytes.

receiver process running on different nodes. We vary RPC message size from 8 to 64K bytes. We compare
two different RPC modes: polling where network threads spin waiting for new events and blocking where
network threads sleep when no new events are available. We report average RPC latency.

Figure 1 shows the results. With manycore processors being less optimized for single-thread perfor-
mance, RPC latency measured on the two KNL platforms is noticeably higher than that on the Haswell
platform. This reduction of performance is more significant when the RPC implementation does not poll
for new events and requires one or more context switches to process an incoming event. Like RPC pro-
cessing, context switch latency, along with the latency of many other system calls, is largely a function of
the single-thread execution speed, not the throughput, of the underlying processor. For example, our results
from LMbench [42] show that it takes only 141us to fork a process on a Trinity Haswell node while it takes
about 6x longer to do so on a KNL node.

When per-core performance is low, total performance is not necessarily low when one splits a task
over multiple processor cores and has all the cores progressing in parallel. Figure 1(c) shows the total RPC
bandwidth we can achieve per-node while performing all-to-all data shuffling across 32 compute nodes using
different number of processes per node (PPN). We keep RPC message size fixed at 16K, which is the biggest
payload GNI allows without invoking bulk transfers. Unfortunately, despite KNL nodes having twice the
number of CPU cores compared to Haswell nodes, per-node RPC bandwidth on KNL is still about 3x lower
than that of Haswell nodes. This fact further exacerbates the impact of manycore processors on inter-process
data communication activities.

While our work is mainly motivated by the reduced network performance seen on manycore platforms,
there are other reasons that network bandwidth experienced by a parallel application can be lower than
the capacity of the interconnection hardware. Interference from concurrent jobs and contention at network
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Figure 2: Distributed processes of a parallel application writing data output. Without data partitioning,
data is streamed to per-process files; per-key data ends up in multiple files and reading a key may require
searching all files. With data partitioning, each key is sent to a particular process so reading a key requires
searching only a single data partition.

switches can cause applications to observe reduced performance [59, 58]. Inter-process communication
cost also rises when applications scale from thousands of processes to hundreds of thousands [69]. Fast data
partitioning techniques discussed in this paper can be applied to these cases as well.

3 Fast Data Partitioning Designs

While fast interconnects are often found on HPC platforms, modern manycore processors, as well as bot-
tlenecks within the interconnection network itself, can significantly increase the cost of network commu-
nication, making data partitioning prohibitively expensive. We believe that key to mitigating this problem
is to greatly reduce the inter-process communication needed to partition the data so that the overall data
partitioning process becomes less subject to the platform’s hardware configuration and runtime status. In
this section, we start by restating the data partitioning problem. We then describe the current state-of-the-art
solution to this problem: simple data indirection, followed by our own solution: FilterK'V.

3.1 The Data Partitioning Problem

In this paper we model data as KV pairs [61, 27, 36, 31]. We focus on the partitioning of data among the
distributed processes of a parallel application and its impact on performance. Each data partition corresponds
to a disjoint range in the data key space. Each application process owns a data partition. A data partitioning
function is used by the application to determine the process owning the range for a given key. Any process
is a sender of data, and we assume that any process can also be a receiver for a range of keys. Our goal is to
reduce the total amount of data that must be sent to remote processes.

Many applications, such as in the scientific domain, write their output in a different order than the way
that followup queries want it. In that case, data partitioning can drastically reduce the total amount of data
a query needs to search for a key of interest. As shown in Figure 2(a), without partitioning data is directly
written to per-process files. This means that a subsequent analysis query may have to scan an entire dataset
in order to recall the data of a specific key. With data partitioning, however, all data of a key is grouped
at a particular process before writing so reading that key requires only searching a single data partition, as
illustrated in Figure 2(b).

In view of the growing gap between compute and I/O [32], in this paper we focus on data partitioning
that takes place in-situ with simulation I/O. This is because in-situ processing partitions data as it streams
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Figure 3: Illustration of three different data partitioning schemes. A) The base format shuffles keys with
values so potentially lots of data is shuffled. B) By shuffling keys with only pointers to values, simple
indirection moves less data but storing pointers in addition to values can incur a significant amount of extra
I/O to storage when value size is small. C) By persisting lossy data pointers, indexes can be stored using
less space, resulting in less I/O overhead while still permitting efficient reads.

to storage so expensive data post-processing can be avoided [67, 65, 39]. For computing platforms with
shared network-attached storage as opposed to on-node storage [13, 12], writing data to storage consumes a
portion of a compute node’s network bandwidth potential. This potential is dependent on the interconnection
network, the NIC, and the processor of the compute node. Usually, even with manycore processors, this
potential is greater than the per-node storage bandwidth a compute node can get on HPC platforms. Because
of this, the residual network bandwidth, the fraction of a compute node’s network bandwidth potential not
consumed by storage I/O, can be utilized to perform in-situ data operations. While our previous work
considered cases where this residual network bandwidth is high [69, 68], in this paper we handle cases
where this residual bandwidth is limited.

3.2 Simple Data Indirection

The current state-of-the-art solution to avoid overloading the network when residual network bandwidth is
low is to use simple data indirection. Rather than sending the entire KV pairs to the other side, as illustrated
in Figure 3(a), one sends keys with only pointers to values. To achieve this, an application process writes
the value portion of a KV pair to a per-process log file. The offset of the write along with the process’s rank
number (used as a partition ID) is then encoded into a pointer and sent with the key to the partition where
the key belongs. This process is illustrated in Figure 3(b). With data pointers and keys stored at individual
data partitions, a reader program is able to efficiently locate per-key information and traverse pointers to
read back the actual data.



The advantage of sending pointers instead of actual data is a reduction in the total amount of data
pushed over the network. However, storing data pointers in addition to the original data has the disadvantage
of adding space overhead and thus increasing an application’s total I/O time. While this overhead might turn
out to be negligible when the size of the pointer is negligible compared to the size of the respective KV
pair, this is not always the case. Values smaller than 250B are reported to be the norm for Facebook’s
Memcached [8], while scientific application output often consists of a massive number of objects smaller
than 50B [15, 20]. In these cases, simple data indirection may end up adding more overhead in the form of
I/O time to storage than is removed from the network layer. We measure this in more detail in Section 5.
In Section 4 we also show that compression alone does not necessarily help. To more effectively attack
this problem we utilize filter data structures that can more compactly represent data pointers and store them
using considerably less space.

3.3 Reducing I/O and Space Overhead

To improve performance beyond what simple data indirection can provide we need to further reduce I/O
and space overhead. With simple data indirection the write-path code only partitions and shuffles the keys
and pointers. Values are written directly to per-process log files reducing the time that this data stays in the
network (down to zero if the storage is directly attached). Readers will know exactly where to recover the
data associated with each key by using the pointer stored with the key. To locate the data of a key, each
data pointer identifies the log file to which the data is written as well as the offset in the log file where the
data resides, as illustrated in Figure 3(b). In practice, data pointers can easily add a 12-byte I/O and storage
overhead per key, with each pointer consisting of a 4-byte file ID and an 8-byte file offset. Our goal is to
considerably reduce this overhead while still allowing readers to efficiently retrieve per-key data.

Our approach, referred to as FilterKYV, is to store lossy data pointers instead. That is, rather than
recording a key’s exact data location, we map each key to a list of candidate data locations of which only
one needs to contain the value corresponding to the key. The loss of precision here enables us to write less
information. We show in Section 5 that this loss in precision does not significantly affect query performance.

We use filter data structures to reduce both the precision of our data pointers and the amount of data
we must store. Figure 3(c) shows a high-level picture of our design: instead of writing values to per-process
log files and sending keys with direct data pointers to the other side, each application process now writes
complete KV pairs to a per-process KV table. It then sends a second copy of the keys along with the ID of
the process to the other side. As a result, the final data output consists of two types of tables: one with the
original KV pairs, and the other mapping keys to their source locations. We call the first type of tables main
tables and the second type of tables auxiliary tables.

Because information stored in auxiliary tables is partitioned, a reader program is able to quickly de-
termine a key’s source location by looking it up in one specific auxiliary table and then going to the corre-
sponding main table to retrieve the data. Due to intentionally reduced precision, it is possible for keys to be
mapped to multiple source locations. In such cases, a reader program must search one or more main tables
until it finds the data of interest. Because main tables are packed with complete KV pairs, a reader program
knows when it hits a key.

4 Implementation and Measurements

To avoid overloading the network we can write data to per-process log files and shuffle only data indexes.
Because data indexes are persisted in addition to the original data, our goal is to minimize the total amount
of indexing information we write to storage while not drastically disturbing query performance. With the
FilterKV approach we presented in Section 3.3, we envision a compact auxiliary table representation able to
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Figure 4: Compactly mapping keys to ranks using Bloom filters. Step 1 inserts two key-rank mappings into
the filter, turning two subsets of the filter’s bits from 0 to 1. Step 2 retrieves k1’s mapping by exhaustively
checking all possible mappings for k1. Due to false positives, a Bloom filter may map a key to one or more
ranks. In this example, there are 4 ranks and k1 is mapped to both rank 1 (true positive) and 2 (false).

map keys to their source locations using only a small fraction of the indexing data needed by the current state-
of-the-art. To make this feasible we allow individual keys to be mapped to more than one source locations. In
this section we discuss techniques for realizing these lossy auxiliary tables while cost-effectively bounding
query latency. Note that because keys can each be mapped to one or more source locations, a query may
have to check all of them in order to find the data of interest.

4.1 Our Initial Implementation using Bloom Filters

One way to implement a lossy auxiliary table is to use a family of data structures known as filters. Fil-
ters are compact data structures whose canonical use involves managing memberships. In these types of
applications, one inserts keys into a set and then asks if a key is in the set. For example, a filter can be
designed to return “False” when a key is definitely not in a set (i.e., no false negatives) or “True” when it
may be in the set (i.e., false positives are possible). Compared with elementary data structures such as hash
tables and binary search trees, filters can be extremely space-efficient. This is typically achieved by filters
carefully converting keys to small fingerprints before storing them in their base data structures. There are
many implementations of filters [14, 26, 49, 10]. In this section we use the Bloom filter [14] as an example
filter to implement our auxiliary tables.

Aucxiliary tables are designed to map keys to their source locations. To store these mappings using a
Bloom filter, we treat each individual mapping as an opaque object and put the binary representation of it
(e.g., the concatenation of the binary representation of the key and that of the source location) into the filter
(shown in Figure 4). To read back the source location of a key we perform a set of independent queries on
the filter. Each query targets a distinct source location, testing if there might exist a mapping from the key to
that particular data location. To cover all possible source locations for a key we try all of them. For example,
Figure 4 has 4 data partitions so we run 4 different queries to obtain all candidate source locations for each
given key of interest. The total number of candidate locations a filter may return for a key is a function of
the data structure’s false positive rate, as we now discuss.

To achieve space efficiency, filters store in their base data structures small fixed-sized fingerprints in-
stead of the actual data (which in our case is the opaque mapping objects we insert into the filter which can
be of arbitrary size). The false positive rate of a filter is largely determined by the number of bits we set for
each fingerprint. The more bits we set, the less the rate of false positives. For Bloom filters, each filter is
built atop a bit vector and each incoming data is hashed into a subset of bits (the fingerprint) in the bit vector
as shown in Figure 4. The more bits we budget for each fingerprint, the larger the size of the base bit vector
and the less likely that different fingerprints collide and we get less false positives.

Returning to Figure 3(c), with auxiliary tables implemented using Bloom filters, bounding the total
number of data partitions a query needs to search for a key is just a matter of configuring the filter to allocate
enough bits for its fingerprints. To demonstrate the effectiveness of this approach we show in Table 1 the
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minimum amount of Bloom filter bytes we need to budget for each key in order to bound the number of
data partitions per query per key to 2 (b2) or 10 (b10). For each machine we image running an application
that consumes the entire machine and that the total amount of data partitions is equal to the total amount of
CPU cores the machine has. Results show that even for the world’s largest machines we can ensure good
query performance by spending only about 3 bytes per key on data indexes. This is considerably less than
the 12-byte per-key overhead we see with the data indirection format we analyzed in Section 3.2.

4.2 A Filter-Index Hybrid Implementation for FilterKV

With FilterKV we are targeting an efficient data partitioning scheme that reduces the total amount of data
shuffled through the network. FilterKV achieves this by maintaining an auxiliary table at every data partition
to record the source location of each individual key. To minimize I/O and storage overhead, we need
to restrict the size of FilterKV’s auxiliary tables and we must do so without sacrificing fast queries. As
Section 4.1 shows, we can achieve this by building auxiliary tables upon compact filter structures such as
the Bloom filters.

Unfortunately, while filters scale well for modern computing platforms with millions of CPU cores,
they can be problematic for future exascale computing platforms with tens or hundreds of millions of pro-
cessing units [25] producing tens or hundreds of millions of data partitions. In Figure 3(c) we showed that
auxiliary tables are responsible for mapping keys to their source data locations. With auxiliary tables im-
plemented using filters, we insert into filters opaque mapping objects. Each mapping object identifies the
source data location of a specific key, as illustrated in Figure 4. To recall the source location of a key, we
test the existence of all possible mappings from the key to a particular data location. As the number of filter
tests we need to perform equates the number of data partitions a dataset has, processing a query may require
running an excessive amount of filter computation, and the latency of the computation may no longer be
dwarfed by storage reads. For example, it can take about 1 second to perform 16 million filter operations on
a 2.4GHz Intel Westmere CPU core whereas it may take less than 1 second to read a block from storage.

To attack this problem, we build upon our filter-based auxiliary table design discussed in Section 4.1
and propose a new hybrid implementation that uses both filters and indexes. Our new design, shown in
Figure 5, consists of a filter layer and an index layer. The filter layer consists of an array of fingerprints. Each
fingerprint represents a user key and is mapped to one or more source locations in the index layer. Storing
fingerprints instead of the original keys allows for high space efficiency, an idea we inherit from Section 4.1.
On the other hand, directly recording the source locations of each fingerprint as indexes prevents queries
from having to perform a potentially large number of filter operations which can be time-consuming. The
cost of improved query efficiency is increased space for storing auxiliary tables. We discuss and measure
this tradeoff in more detail in Section 4.3.

To implement FilterKV auxiliary tables using this new hybrid design we use partial-key cuckoo hash
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fingerprint, a partial-key cuckoo hash table may map keys to more than 1 ranks. In this example, k1 is stored
as fp_b and is mapped to ranks 1, 3, and 5.

tables [38, 26], a cuckoo hash table [48, 37] variant that stores fingerprints of keys (partial-keys) instead
of full keys. As illustrated in Figure 6, each partial-key cuckoo hash table consists of an array of buckets.
Each bucket holds up to a certain amount of data slots. When a key-value pair is inserted into a partial-
key cuckoo hash table, the key will be transformed to a partial key using a hash function. The resulting
“<partial-key,value>" pair is then assigned to two candidate buckets in the table, and can be placed at any
of the empty slots in either of the buckets. When no such slot is available, a random slot from one of the two
buckets will be selected to hold the incoming key, with the current resident of the slot evicted and relocated
to its alternative positions in the table. This relocation process continues until an empty slot can be found,
or fails after a large number (e.g., 500) of recursive attempts and causes the table to be resized. In practice,
partial-key cuckoo hash table size must be a power of 2 so each resize doubles the size of a table [26].
Mapping every key to two potential locations in the table allows for high levels of table space utilization
before a table must be resized [44]. But because not all slots are necessarily filled after all keys have been
inserted into the table, partial-key cuckoo hash tables can “leak’ space in the data structure, leading to more
space to be used than is necessary.

To minimize wasted space, our implementation creates a new partial-key cuckoo hash table when the
current table is full. For example, instead of resizing an 1-million-slot table to 2 million, our implementation
combines an 1-million-slot table with an 128K-slot table to hold 1.1 million keys. This allows us to keep
space utilization at about 95% in practice.

4.3 Measurements

A key benefit FilterKV brings over the current state-of-the-art (simple data indirection) is a more compact
representation of data indexes. The cost of it is that a query would incur additional lookups to find the data
of a key. In this section we evaluate this tradeoff. We consider 3 data partitioning schemes: data indirection
as the current state-of-the-art (Fmt-DataPtr), FilterKV with a Bloom Filter implementation (Fmt-BF), and
FilterKV with a partial-key cuckoo hash table implementation.

Test runs consist of generating 16 million keys and inserting their indexing information into a data
structure. All generated keys are random 8-byte integers. We vary the number of data partitions each
data structure needs to index over, defined as N, from 1000 to 16 million, as the supercomputer with the
most number of CPU cores in the world has about 10 million CPU cores. For the data indirection scheme
(Fmt-DataPtr), we set each data pointer to be 12 bytes, consisting of an 8-byte offset and a 4-byte rank
number, as discussed in Section 3.2. For the FilterKV with partial-key cuckoo hash tables (Fmt-Cuckoo),
we configure each partial-key to be 4 bits and its value to be log(/N) bits so it has enough bits to distinguish
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Figure 7: Comparison of three different data partitioning schemes. Fmt-DataPtr is the state-of-the-art base-
line. Figure b) shows space overhead both before and after compression is applied.

individual partitions. For the FilterKV with Bloom filters (Fmt-BF), we configure our Bloom filters to budget
4 +log(N) bits for each key. This way they use the same amount of storage as their partial-key cuckoo hash
table counterpart.

Figure 7(a) shows the average number of data partitions a data structure returns for each key. This
number is always 1 for the data indirection scheme (Fmt-DataPtr) as it stores exact index information. For
the FilterKV with Bloom filters (Fmt-BF), the number of data partitions it returns increases, albeit slowly,
as the total number of data partitions increases. This is because in this scheme the number of data partitions
returned is a function of both the total number of data partitions and the filter’s false positive rate, with the
latter being a function of the number of bits we budget for each key. Unfortunately, each additional bit per
key only causes the Bloom filter’s false positive rate to be reduced by less then by 2x. In other words, the
number of data partitions returned keeps increasing because the reduction in the filter’s false positive rate
cannot compensate for the increase in the total number of data partitions out there. To resolve this problem
we could configure Bloom filters to budget 4 + 1.44 log(N) bits per key rather than the 4 + log(N) bits we
tested, at the cost of increased space overhead.

For the FilterKV with partial-key cuckoo hash tables (Fmt-Cuckoo), the number of data partitions the
data structure returns for each key is around 2, and does not increase as the total number of data partitions
increases. This is because in this scheme each key is directly mapped to data partitions so the number of data
partitions returned is a function of only the filter’s false positive rate; it is not affected by the total number
of data partitions.

Figure 7(b) shows each scheme’s space overhead, measured as the number of bytes per key, before and
after we compress each data structure using the Google’s Snappy compression library. Because with the
data indirection scheme (Fmt-DataPtr) exact information is stored, it consumes the most space in spite of
compression. Both our FilterKV schemes are able to use much less space due to their compact, albeit lossy,
index representations, even before compression. The partial-key cuckoo hash table implementation (Fmt-
Cuckoo) used slightly more space than the Bloom filter implementation because not all slots in a partial-key
cuckoo hash table are eventually used, as we discussed in Section 4.2.

S Experiments

This section evaluates the end-to-end performance of different data partitioning schemes at scale. We
compare data partitioning that shuffles full KV pairs (Fmt-Base), data partitioning that uses indirection
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(Fmt-DataPtr), and data partitioning that utilizes both indirection and partial-key cuckoo hash tables (Fmt-
Cuckoo).

5.1 Microbenchmark Results

Our first group of experiments evaluate the performance of our cuckoo-based data partitioning scheme under
different job scales and KV pair sizes. These experiments were performed at the Narwhal computing cluster
at CMU. Each Narwhal compute node consists of 4 CPU cores and 16GB memory [9]. These compute
nodes are interconnected with an Ethernet network. Each node is equipped with one 1Gbps Ethernet NIC
for data communication. This limited network bandwidth makes Narwhal an ideal testbed for measuring
the effectiveness of a data partitioning scheme in operating with reduced network communication cost.
In this particular group of experiments, network communication is costly because the physical network
bandwidth available to each compute node is low. Modern manycore processors can similarly make network
communication costly, which we measure in Section 5.2.

We developed a simple parallel benchmark program to drive our tests. In each test, we run a certain
number of parallel processes, and have each process generate random KV pairs of certain sizes. In the first
set of runs, we fix the key-value size at 64 bytes and vary the total number of parallel processes from 64 to
640, using 16 to 160 Narwhal compute nodes. The results are shown in Figure 8. In the second set of runs,
we fix the total number of parallel processes at 128 and vary key-value size from 16 bytes to 192 bytes.
The results are shown in Figure 9. While the total key-value size may vary across runs, the size of the key
is always fixed at 8 bytes. Also fixed is the total number of data generated per parallel process, which is
configured at 960MB per process across all runs.

We compare two different levels of residual network bandwidth, representing two different degrees of
network communication cost. To better understand this cost, let us consider a real-world machine as a case
study. The Trinity computer at LANL is configured with 1 burst-buffer node per 32 compute nodes [34].
The compute nodes and the burst-buffer nodes are connected within a single interconnection network. Both
types of nodes are equipped with the same type of NIC, and writing data from compute nodes to the burst-
buffer storage is bottlenecked at the NICs of the burst-buffer nodes. As such, the residual network bandwidth
(total available network bandwidth - storage bandwidth) for Trinity compute nodes is roughly 97% (100% -
1/32). By configuring residual network bandwidth at 50% and 75% in our tests, we emulate cases in which
network capability is considerably lower than advertised.

We use write slowdown to gauge the total data partitioning overhead during data writing. It is measured
as the additional time each test needs to spend on writing all the data. As an example, the write slowdown
is said to be 100% if it takes a test twice amount of the time to write the data with data partitioning, as
opposed to directly writing the data to storage without performing any in-situ data operations. Note that this
overhead includes both the overhead caused by performing additional network operations and the overhead
incurred by writing filters or data pointers in addition to the original data.

Figure 8 shows the write slowdown of different data partitioning schemes as a function of job size.
The base format (Fmt-Base) shuffies entire key-value pairs so a large amount of data is shuffled in each run
and the overhead it incurs rises quickly as job size increases. Through the use of indirection (Fmt-DataPtr),
data pointers are shuffled instead of the original data so much less network activities are performed. This
leads to a much lower write slowdown compared to that of the base format. Finally, the use of partial-key
cuckoo hash tables in addition to indirection (Fmt-Cuckoo) allows the total amount of data indexes written
to storage to be minimized while shuffling less data, so the resulting write slowdown is even lower than that
of using data indirection alone (Fmt-DataPtr).

Figure 9 compares write slowdown as a function of the size of key-value pairs. The base format (Fmt-
Base) shuffles entire key-value pairs so its performance does not change with key-value sizes. For the
other formats (Fmt-DataPtr and Fmt-Cuckoo), write slowdown decreases as key-value size increases. This
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Figure 8: Weak-scaling results comparing the performance of different data partitioning schemes under
different job sizes. We vary job size from 64 (16 nodes) to 640 parallel processes (160 nodes). Each run
generates 15 million key-value pairs per process. Each key-value pair is 64 bytes.

is because the additional data indexes these two formats generate may add a significant I/O and storage
overhead when key-value size is small, and is insignificant compared to the total data size when key-value
size is large. While our cuckoo format beats simple data indirection in all cases, the benefit is most welcome
when key-value size is 32 to 64 bytes, which is the data size of many scientific workloads.

5.2 Macrobenchmark Results

Our second group of experiments evaluate the performance of FilterKV under a real scientific use-case. The
scientific application we choose for our experiments is a Vector Particle-In-Cell (VPIC) simulation [15].
VPIC is a scalable particle simulation code developed at LANL. In a VPIC simulation, each simulation
process manages a region of cells in the simulation space through which particles move. Every few timesteps
the simulation stops and each simulation process writes out the state of all the particles currently managed
by the process. In our experiments, state for each particle is 64 bytes. Each query involves retrieving the
trajectory of a specific particle along the course of a simulation. Unmodified VPIC writes data directly
into per-process output files. Because particles move during a simulation, they may end up in different per-
process output files in different timesteps. This means that without post-processing to reorganize this data,
retrieving the information of a specific particle would require searching an entire VPIC dataset. To speed
up queries, we use our previous system, DeltaFS Indexed Massive Directories, to dynamically partition and
index data as it streams to storage [68, 69]. To partition data our previous implementation shuffles entire KV
pairs. With this paper we have modified our implementation to support data partitioning that shuffles keys
with pointers to data, and data partitioning using the FilterKV scheme.

Our experiments were performed at the LANL’s Trinity supercomputer. Recall from Section 2 that
Trinity consists of two types of compute nodes equipped with either the Haswell multicore CPU, or the
KNL manycore CPU. Each Haswell compute node consists of 32 CPU cores and 128GB memory. Each
KNL compute node consists of 68 CPU cores and a total of 112GB memory with 96GB regular DDR4 and an
additional 16GB high-bandwidth memory (HBM). Our runs only allocate memory from the main memory.
Our results (not shown in this paper) indicate that using the 16GB HBM does not increase, or reduce,
performance since the particular in-situ operations in our experiments are not bottlenecked on memory
operations.

We compare performance both on Haswell nodes and on KNL nodes. Each run consists of a VPIC
simulation, followed by 100 independent queries. Each VPIC simulation runs 4096 parallel processes and
simulates a total of 32 billion particles. Each process on average manages 8 million particles. The aggregate
state of all particles is approximately 2TB. Across all runs, simulation data was first pushed to burst-buffer
storage and was later staged out to the platform’s underlying filesystem. We vary the number of burst-
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Figure 9: Results comparing the performance of different data partitioning schemes under different key-
value size configurations. We fix keys at 8 bytes and vary key-value size from 16 to 192 bytes. Each run
uses 128 parallel processes and generates the same amount of total data.

buffer nodes used in each run from 2 to 5 to test performance under different network-to-storage ratios.
After simulation ends, queries were executed directly from the underlying filesystem. Each query randomly
targets a particle and a timestep, and reads the state of that particle at that timestep.

Figure 10(a) shows the overhead that in-situ data partitioning, as well as indexing, adds to the I/O
phases of each VPIC simulation run. Looking at the right-half of the figure, it evaluates performance when
available underlying storage bandwidth is high so hiding network communication cost is more critical to
overall performance. In this region, using an efficient data partitioning scheme is crucial to the overall write
performance. Results show that FilterKV can reduce total write time by up to 3x compared to the base
format, and by up to 2x compared to the current state-of-the-art. Moving to the left-side of the figure, we
evaluate performance when available underlying storage bandwidth is low so the overall writing process is
more bottlenecked on the storage side and hiding network communication cost is thus less critical. In this
region, using a compact representation that minimizes the size of data indexes is crucial for the overall write
performance. Results show that FilterKV can reduce total write time by up to 2x compared to the current
state-of-the-art.

We have also tested how the performance of these data management schemes is affected by the network
protocol. Figure 10(b) shows the write performance when we use TCP, rather than more efficient Cray
GNI, to perform low-level network communications. While we are by no means advocating using TCP for
production jobs, our results show that with the FilterKV scheme we can effectively run TCP jobs almost as
fast as GNI jobs. On the other hand, with the base format, TCP jobs can be two-orders of magnitude slower
than GNI jobs, which is not a surprise.

Figure 10(c) shows the read performance of all three data partitioning schemes. FilterKV has the
highest minimum and median read latency because each query must first fetch a partial-key cuckoo hash
table and then may have to attempt reads at multiple data partitions due to false positives. The base format
has the lowest minimum and median read latency because each query can directly read data from a specific
data partition. The current state-of-the-art shuffles keys and pointers to data so each query only performs
one extra read and its latency is not as high as FilterKV in general.

6 Related Work

Filter data structures are used by many storage systems to achieve high read performance. Unlike indexes
which directly map keys to their data locations, filters speed up queries by indicating where not to read and
saving the query process from doing potentially a large number of unnecessary storage reads [3]. When
the application’s key space is bounded, filters are usually implemented by bitmaps and are compressed to
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Figure 10: End-to-end results from running the VPIC scientific application and partitioning its data using
different data management schemes. All experiments were conducted on the LANL Trinity supercomputer.
Higher storage bandwidth makes the effect of network performance more critical.

save space [60, 62]. When the key space is unbounded, filters can be implemented by hash-based data
structures such as the Bloom filters [14], cuckoo filters [26, 38], and quotient filters [49, 10]. Recently, we
have also seen filters implemented by tries such as SuRF [64] and the ECT structure in SILT [38]. These
filter implementations can be used to implement our FilterKV schemes too.

The idea of data indirection is used by many LSM-Trees key-value stores to reduce the overhead of
compaction operations. For example, WiscKey [41] reduces the I/O amplification associated with com-
paction by storing keys and values separately and only performing compaction on the keys. Similar use of
this idea is also seen in systems such as IndexFS [51] and Cassandra [31]. In addition to data indirection,
systems such as Monkey [22] and SlimDB [50] use analytical models to generate optimized filter layouts
that balance per-filter performance with available memory. This allows for minimizing its overall false pos-
itive rate given a fixed memory budget. Such designs are typically optimized for dedicated storage nodes
whose entire memory can be used to serve data operations. Both LSM-Trie [63] and SlimDB [50] use an in-
cremental compaction scheme [30] to reduce compaction overhead. In this design, compaction overhead is
kept low by performing compaction less aggressively, resulting in the tree having more levels. Such designs
typically use larger filter structures to balance read performance. Finally, VI-Tree [52] features a design that
allows in-order data to be linked into an ordered data structure instead of performing a direct merge-sort.
This design can also be viewed as a form of data indirection. This paper focuses on using data indirection
to reduce the total amount of data shuffled over the network as opposed to data compaction in LSM-Trees.
In addition, with FilterKV we also focus on using compact data representations to reduce space overhead.

Rich in-transit data processing capabilities are provided by multiple middleware libraries such as Pre-
DatA [65], GLEAN [59, 58], NESSIE [46], and DataSpaces [11]. These systems all use auxiliary nodes to
provide analysis tasks. Similarly, systems such as Damaris [24] and Functional Partitioning [35] co-schedule
analysis, visualization, and de-duplication tasks on compute nodes, but require dedicated cores.

The GoldRush runtime [66] provides an embedded in-situ analytics capability by scheduling analysis

14



tasks during idle periods in simulations using an OpenMP threaded runtime. The analysis tasks leverage the
FlexIO [67] capability within ADIOS [39] to create shared memory channels for generating analysis task
inputs. These are processed during idle periods of application execution.

VPIC is a widely-used particle simulation code developed at LANL [15]. Large-scale VPIC simulations
have been conducted with trillions of particles, generating terabytes of data for each recorded timestep [18,
17, 16]. While FilterKV helps VPIC simulations better partition particle data, it can help other applications
as well. This is especially true when the size of data is small so storing data pointers in addition to data can
be prohibitively expensive.

Conclusion

In this paper we show how to leverage filter data structures to produce more efficient data partitioning
schemes that reduce the total amount of data transferred over the network. Our scheme makes data parti-
tioning less subject to the configuration and architecture of the computing platform. Our results show that
our mechanism is able to reduce in-situ data partitioning overhead by up to 3 times while only slightly
increasing query latency.

So long as electricity bills still amount to a substantial portion of total operation cost, and so long as
the laws of physics still have CPU power be roughly a quadratic function of CPU frequency, there is always
a cause to switch to low-frequency platforms. And as a result, we will continue sacrificing single-thread
performance for cost-effective high throughput. In fact, low-power data systems utilizing a large number of
lightweight processors have been studied for a decade [57, 4, 19]. Recent efforts in deploying HPC filesys-
tems on cost-effective ARM storage servers can also be viewed as a continuation of this idea. With efforts
like these mainly targeting 1/O nodes that do not need to perform heavy computation and communication,
the recent shift from high-frequency multicore computing platforms to lightweight manycore platforms is
a brave move to attempt cost-effective high throughput on the main computing platform. While highly
energy-efficient manycore processors may become obsolete in the future, single-thread performance of the
main computing platform is unlikely to increase and will more likely keep dropping slowly. This, coupled
with the on-going trend of using software-defined storage services to manage on-platform storage, network,
and compute resources, requires new storage formats to minimize data movement, index size, and our code’s
reliance on single-thread performance.

In this paper we have used filter data structures in novel ways to achieve both storage efficiency (by
storing less data) and communication efficiency (by transmitting less data through the network). We found
that filter data structures can be extremely effective in alleviating large-scale data partitioning bottlenecks.
This includes Bloom filters that can be implemented in 100 lines of code. With emerging HPC and high
performance data analytics systems combining multiple memory and storage technologies in new ways, it is
possible for filters to be applied to other on-platform in-situ activities, and to be optimized to achieve further
improvements in data management.
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