
18

The growth of the Internet is creat-
ing a demand for broadband access equip-
ment and network-enabled consumer
appliances. At the heart of these products are
communications processors—devices that
integrate processing, networking, and system
support functions into a single, low-cost sys-
tem on a chip (SOC). The primary challenges
in the design of these devices are minimizing
cost and time to market, and maximizing flex-
ibility. Die size and packaging are the major
factors that determine cost. The rapid pace at
which Internet applications and services are
evolving increases the pressure to reduce devel-
opment time. Thus, designers of communi-
cations processors are continually looking for
ways to speed design and verification. Rapid
change is also increasing the importance of
flexibility. Communications processors are
often adapted to applications that may not
have been anticipated, or even existed, when
the chip was designed.

A large body of research and experience in
the design of network adaptors for worksta-
tions exists.1-3 It may appear that a communi-
cations processor consists of nothing more
than integrating these designs on a chip. How-
ever, this is not the case since the system

requirements and constraints for workstations
and communications processors are funda-
mentally different. Designers must carefully
manage latency in communications proces-
sors to reduce on-chip buffering. Network
interface cards (NICs) typically used in work-
stations plug into I/O buses that have high
latencies. This forces a NIC to include large
buffers and encourages large burst transfers
for efficiency. For example, a 10-/100-Mbps
Ethernet NIC can have as much as 12 Kbytes
of buffering.4 Since communications proces-
sors often contain multiple network interfaces,
placing such large buffers on chip may not be
possible and is certainly not cost effective.

Space requirements in workstations are not
as stringent as those in the SOC environment
of communications processors. This allows
workstation NICs to include considerable
processing power. For example, “intelligent”
NICs contain on-board processors.2 Even
“dumb” workstation NICs are actually quite
intelligent. For example, it is common for a
NIC to contain a complex DMA controller
and buffer management unit. In a communi-
cations processor this functionality is typical-
ly shared among multiple network interfaces
to reduce die size. Network interfaces in these

Charles D. Cranor
R. Gopalakrishnan

Peter Z. Onufryk
AT&T Labs, Research

0272-1732/00/$10.00 2000 IEEE

ARCHITECTURAL CONSIDERATIONS
FOR CPU AND NETWORK
INTERFACE INTEGRATION

THE AUTHORS DESCRIBE UNUM, AN ARCHITECTURE FOR INTEGRATING

COMMUNICATIONS FUNCTIONALITY INTO THE CPU. UNUM NOT ONLY SIMPLIFIES

THE DESIGN OF COMMUNICATIONS PROCESSORS BUT ALSO IMPROVES THEIR

PERFORMANCE AND PROVIDES THEM WITH GREATER FLEXIBILITY.

devices consist simply of a data link interface
and buffers.

The integration of processing and net-
working in the same device offers an oppor-
tunity to rethink the way CPUs and network
interfaces are designed. Most communications
processor CPU cores use Instruction Set
Architectures (ISAs) that were initially devel-
oped for workstation processors and opti-
mized for SPEClike benchmark performance.
Network adaptor research has focused on
reducing memory copies and host CPU pro-
cessing,5,6 both of which lead to complex
interface-specific hardware that is not appro-
priate for communications processors.

We introduce UNUM, an architecture for
communications processors that supports
extremely fast event processing and high per-
formance data movement. With these capa-
bilities, functions typically performed in
custom hardware can be moved to software
executing on the main CPU.

Design approaches
The design of a communications processor

rarely begins from scratch. Cores are either
licensed from external intellectual property
(IP) vendors or are available from internal
sources. With the emergence of on-chip bus
standards and a thriving IP industry, it would
appear that a communications processor could
be rapidly designed by licensing standard CPU
and network interface cores and tying the
whole system together with a multichannel
DMA controller. It has been our experience,
as well as that of others, that the design and
verification of this type of DMA controller is
both complex and time consuming. This is
especially true when features necessary for high
performance such as unaligned transfers and
cache coherency are incorporated.

Figure 1 shows a simplified block diagram
of a typical multichannel DMA controller.
Since only one DMA channel can be active
on a bus at any given time, we can save die
area by designing a single DMA state machine
that is shared by all DMA channels. Since
there is considerable state information associ-
ated with each DMA channel (source address,
destination address, byte count, and descrip-
tor pointer), this state is commonly stored in
a RAM rather than individual registers to
reduce chip area. When a DMA channel

becomes active, the controller transfers its
state from RAM to the DMA state machine.
After the operation completes, the controller
writes back the updated channel state to
RAM. Arbitration logic determines which
DMA channel is serviced next.

Unlike other parts of a communications
processor for which standard cores are readily
available, the DMA controller must often be
designed from scratch. This is because the
DMA controller is highly system dependent.
These system dependencies include perfor-
mance requirements, on-chip bus architecture,
memory controller design, as well as the type
and number of supported network interfaces.

Diversity in network interface requirements
has the greatest impact on DMA design. In
addition to transferring data, high-perfor-
mance, descriptor-based DMA controllers
also transfer control and status information
between DMA descriptors in memory and a
network interface. This allows the DMA con-
troller to execute sequences of transfers
autonomously. The format and content of
these descriptors typically needs to be modi-
fied for each type of network interface. Also,
the basic function of a DMA channel itself
may need to be modified. For example, the
destination address for a received ATM cell is
not the address of a buffer pointer in a descrip-
tor as it would be for an Ethernet frame.
Instead, it is the address of a reassembly buffer
that is dependent on the virtual circuit iden-

19JANUARY–FEBRUARY 2000

Channel state
RAM

DMA
state machine

DMA
channel
select
logic

DMA
request
signals

On-chip bus

Figure 1. Multichannel DMA controller.

tifier fields in the cell’s header. We call this
form of channel customization interface-
specific processing since it requires function-
ality beyond simple data movement. Other
examples of interface-specific processing are
multiplexing and demultiplexing of data
based on the time slot for a time-division mul-
tiplexing bus, and searching through multi-
ple DMA descriptors for an optimal size
buffer to store a received Ethernet frame.
Despite the complexity of designing a multi-
channel DMA controller, a number of com-
munications processors such as the AMD
Am186CC,7 the NETsilicon Net+ARM,8 and
the Euphony processor9 use this approach.

The design of a multichannel DMA con-
troller with the features necessary to support
multiple network interfaces can be as complex
as a programmable processor. For this reason,
some designers have chosen to replace multi-
channel DMA controllers with a dedicated
processor for data transfers and interface-
specific processing. This eliminates the com-
plexity of designing the DMA controller,
provides flexibility, and allows modifications
and enhancements to be made in software.
The Motorola MPC86010 and the Virata
Helium11 use this approach.

Adding a second processor for data trans-
fers and interface-specific processing elimi-
nates the complexity of designing a DMA and
provides flexibility. However, it also introduces
the software complexity and partitioning
issues associated with developing code for
multiple processors. This is especially true if
the architecture of the processor that handles
communications tasks differs from that of the
main CPU. Since processor functions must
be replicated in this approach (for example,
two bus interface units, two ALUs), it may
increase die size. This approach also leads to
a static partitioning of functions onto proces-
sors. Idle cycles on one processor cannot be
used to enhance performance of tasks running
on the other.

Applications with low data rates that can
tolerate high latencies without requiring large
on-chip buffers do not require a DMA con-
troller or a dedicated processor. Instead, an
interrupt handler running on the main CPU
may perform these operations. The T.sqware
TS70212 uses this approach.

We believe that a communications proces-

sor for low-cost consumer applications should
contain a single processor that performs all
data movement, interface-specific processing,
and application processing. This becomes
especially true as embedded processors reach
speeds of 500 MHz and higher. The avail-
ability of processor cores capable of perform-
ing these tasks would reduce communications
processor design and verification time,
increase their flexibility, and simplify software
development. UNUM is an architecture for
this type of processor core.

Multithreaded CPU for event processing
Performing data movement and interface-

specific processing on the same CPU as appli-
cation processing dramatically increases the
number of processor events that must be ser-
viced. The key to minimizing communica-
tions processor cost is minimizing die size,
which means minimizing on-chip buffering.
Small on-chip buffers impose tight constraints
on acceptable event service latency and result
in small burst transfers thus increasing the
number of events.

To illustrate the importance of minimizing
event service latency, consider a cut-through
transfer of a 1,518-byte Ethernet frame from
a receive FIFO to memory. Using a 64-byte
burst transfer results in 24 data transfer
request events. To prevent overflow, the
receive FIFO must be large enough to accom-
modate the worst-case event service latency.
A large event service latency not only reduces
the maximum throughput but also requires
larger FIFOs to prevent overflow. This, in
turn, results in higher queuing delays that fur-
ther increase worst-case event service latency.

Current processors service external events,
using either polling or interrupts. Infrequent
polling results in large event service latencies,
while frequent polling consumes large
amounts of processing. Both of these are unac-
ceptable. The worst-case event service laten-
cy for an interrupt with a full-context save for
a high-performance embedded processor is on
the order of several microseconds. Although
typical performance is much better, designers
must consider worst-case performance during
system design since taking the best or average
case will lead to conditions such as buffer over-
flow or underflow.

A major component of interrupt latency is

20

ARCHITECTURAL CONSIDERATIONS

IEEE MICRO

saving and restoring the state
of the interrupted context.
Techniques used to reduce
this overhead include

• coding interrupt service
routines in assembly lan-
guage to use a small
number of registers,

• switching to an alternate
register set for interrupt
processing,

• saving processor registers
to unused floating-point
registers, and

• providing on-chip mem-
ory for saving and restor-
ing state.

Even if interrupt overhead
were eliminated, the overhead
of loading and updating the
event service routine state from
memory would still remain.
This is because interrupt ser-
vice routines do not retain state
across invocations. For exam-
ple, a data transfer event ser-
vice routine must load the
starting address, byte count,
destination address, and possi-
bly a descriptor pointer on
entry, then update the byte count on exit.

To eliminate the latency and overhead of
interrupts, UNUM employs multiple hard-
ware contexts with priorities. By allowing the
state of an event service routine to be pre-
served in a CPU context across invocations,
we eliminate the overhead of retrieving and
updating the event service routine state. Fig-
ure 2 is a block diagram of a UNUM proces-
sor. It consists of three major components: an
event mapper, a context scheduler, and a CPU
pipeline.

The function of the event mapper is to ini-
tiate event service routine execution when an
external event occurs. Associated with each
possible external event are event mapper reg-
isters that contain the context, address, and
priority of the corresponding event service rou-
tine. When an event occurs, the event mapper
uses this information to initiate event service
routine execution by setting the program

counter and priority of the corresponding
hardware context to that of the event. In cases
where multiple events occur simultaneously,
or multiple pending events map to the same
hardware context, the event mapper uses the
priority to determine the order of invocation.

The context scheduler issues instructions
to the CPU pipeline. Each cycle, the context
scheduler examines the priority of all active
contexts and issues the next instruction from
the context with the highest priority. In cases
where multiple active contexts share the high-
est priority, the scheduler issues instructions
from these contexts in a round-robin manner.

The UNUM pipeline is a simple single-
issue RISC pipeline augmented to support
concurrent execution of instructions from
multiple contexts. The 31 × 32 register file of
a typical RISC processor is expanded to a 31n
× 32 register file, where n is the number of
supported hardware contexts. When the con-

21JANUARY–FEBRUARY 2000

Instruction
memory

CPU
pipeline

Register file
(31n × 32)

AdderALU

Data
memory

Context scheduler

Context 0

PC/Priority

Context 1

PC/Priority

Context 2

PC/Priority

Context n
PC/Priority

CID PC

Event
mapper

Program
counter

Priority

Context

External
events

Figure 2. Example UNUM CPU.

text scheduler selects a context from which to
issue an instruction, it presents the CPU
pipeline with a context ID (CID) and a pro-
gram counter value. The CID, together with
a register number from the fetched instruc-
tion, forms the register’s actual address in the
register file. Pipeline bypass and interlock logic
also uses the CID. Thus, aside from modify-
ing the instruction issue logic, expanding the
register file, and adding a CID to bypass and
interlock logic equations, UNUM employs a
traditional single-issue RISC pipeline.

Multithreading has historically been used to
tolerate memory latency. In UNUM, multi-
threading reduces event service latency. A
UNUM processor may be designed to both
tolerate memory latency and reduce event ser-
vice latency.

Data movement instructions
General-purpose processors have poor data

movement capabilities. Programmed I/O (PIO)
generates memory-to-memory transfers that
require twice the bus bandwidth of fly-by DMA
operations. Some system designers have used
special hardware to perform fly-by transfers as
a side effect of address ranges, but this leads to
complex software and does not scale well to
multiple interfaces. PIO operations using non-
cacheable loads and stores result in single-word
data transfers that achieve poor bus utilization.

Using cacheable loads and
stores to generate burst trans-
fers results in data cache pollu-
tion, while using block loads
and stores, present in some
processors, increases register
pressure. Unaligned PIO oper-
ations are extremely inefficient.
This is especially true when
transfers must be performed to
an aligned, fixed-width mem-
ory device, such as a FIFO
port. Finally, PIO operations
tie up the CPU.

Since data movement is
one of the primary functions
of a communications proces-
sor, we have incorporated
data movement instructions
into UNUM. Figure 3 shows
the system architecture of a
communications processor

based on UNUM. The CPU core interfaces to
the rest of the system through an internal bus
interface unit (IBIU). In addition to per-
forming the operations of a traditional bus
interface unit, the IBIU incorporates a data
mover and aligner that segments the on-chip
bus into a memory bus and an I/O bus. The
CPU initiates a data movement operation by
issuing an instruction to the data mover. Since
data movement fully utilizes on-chip buses,
an implementation may either stall the CPU
pipeline until the operation completes or
allow the pipeline to continue execution from
on-chip caches as long as there are no misses.

UNUM data movement instructions per-
form fly-by transfers between memory and
devices on the I/O bus. The TM2D instruc-
tion transfers data from memory to an inter-
face, while the TD2M instruction transfers
data in the opposite direction. In both cases,
fly-by data bypasses the data cache and does
not pollute it. To maintain cache consisten-
cy, the cache supplies dirty data during
TM2D processing, and performs cache inval-
idates during TD2M. Efficient processing of
network data is supported through direct
transfers between a network interface and the
data cache. The TD2C instruction loads data
directly into the data cache from an interface,
eliminating an unnecessary transfer through
memory. The TM2DD instruction discards

22

ARCHITECTURAL CONSIDERATIONS

IEEE MICRO

UNUM
processor

Internal
BIU

External
BIU

Memory controller

Instruction
cache

Data
cache

Ext. I/O

I/O
device

Ext. I/O

I/O
device

Ext. I/O

I/O
device

Aligner
Memory bus I/O bus

Figure 3. UNUM-based communications processor.

dirty data from the data cache
as it is written to a network
interface, potentially elimi-
nating an unnecessary future
write-back.

All data flowing between
the memory and the I/O
buses pass through an aligner
in the IBIU. For aligned
transfers, the aligner simply
passes unmodified data from
one bus to another. For
unaligned transfers, the align-
er uses a holding register,
shifter, and multiplexer to
align data as it flows from one
bus to the other. Figure 4 pro-
vides an example of this for an
unaligned 4-word transfer.

Putting it all together
The ability to service exter-

nal events with extremely low
overhead together with high-
performance data transfer
instructions allows UNUM to
perform data movement and
interface-specific processing
functions in software. Com-
bining a UNUM processor
core with network interface cores allows com-
munications processors to be rapidly con-
structed. A typical high-speed network interface
in UNUM maps to two processor contexts, one
for input processing and one for output pro-
cessing. Threshold logic in the output FIFO of
a network interface generates an event whenev-
er there is room for an output data transfer. Sim-
ilarly, threshold logic in the input FIFO
generates an event whenever enough data exists
for a complete data transfer or an end-of-pack-
et is detected. The event-handling routines may
perform interface-specific processing.

Simulation results
To better quantify the benefits of the

UNUM architecture on data movement and
interface-specific processing, we created a
cycle-accurate simulator of a UNUM-based
communications processor. We based the
CPU in the simulator on the MIPS32 ISA,
which was enhanced to support multiple
hardware contexts and data movement

instructions. The simulator also modeled the
caches, memory system, counter/timers, a
console, and an ATM interface.

We simulated a 200-MHz UNUM proces-
sor with an 8-Kbyte, two-way set-associative
instruction cache; 2-Kbyte, two-way set-
associative data cache; and a 4-word write
buffer. We configured our simulated 32-bit
system bus to run at 100 MHz and the mem-
ory system to consist of 100-MHz SDRAM.
All of the benchmarks were written in C and
compiled with an enhanced MIPS GCC 2.8.1
compiler with “-O3” optimization. Other
than the ones mentioned in the next section,
we did not perform hand assembly language
optimizations. In addition, we assumed that
event and interrupt handlers were locked in
the instruction cache.

Data movement
For our initial measurements we wrote a

data movement micro-benchmark that simu-
lated the transfer of a 1,518-byte packet from

23JANUARY–FEBRUARY 2000

4 written to I/O device

18

19

20

21

14

15

16

17

10

11

12

13

6

7

8

9

5 words read from memory

16

17

18

19

12

13

14

15

20

21

22

23

0

4

8

12

16

20

24

1

5

9

13

17

21

25

2

6

10

14

18

22

26

3

7

11

15

19

23

27

8

9

10

11

4

5

6

7

Aligner

Memory

Holding register

Shifter and multiplexer

Aligner producing first word for I/O device

8

9

10

11

6

7

8

9

5

6

7

Figure 4. Unaligned 4-word fly-by transfer from memory to I/O device starting at address 6.

memory to a network interface using a range
of burst transfer sizes. We measured the result-
ing bandwidth. We examined two data move-
ment mechanisms, one using UNUM data
movement instructions and another using
PIO. Our PIO function moved data using an
optimized hand-coded assembly routine based
on the BSD bcopy() function. We examined
three CPU configurations: UNUM (hardware
context switch with state preservation), fast
interrupts (alternate register set with no inter-
rupt state preservation), and normal proces-
sor interrupts. For normal interrupts we
assumed an overhead of 1 µs. We ran our
benchmark for best- and worst-case data cache
scenarios for state information and with the
assumption that data to be moved is not pre-
sent in the data cache.

Figure 5 provides the results of the data
movement benchmark. PIO-based data
movement results in the worst performance.
The highest achievable bandwidth using PIO
was 40 Mbytes/sec. This was true regardless
of the type of CPU used (UNUM, fast inter-
rupts, or regular interrupts) and caching
assumptions since the cost of PIO dominates
all other overheads.

Making use of UNUM’s data movement
instructions improved results significantly. For
an SOC environment with small on-chip
buffers we expect burst sizes in the range of

64 bytes. Using this burst size, a normal inter-
rupt-based system achieved 47 Mbytes/sec.
Data cache misses had little effect since we
assumed a fixed interrupt overhead of 1 µs,
which dominated. Replacing normal inter-
rupts with fast interrupts improved perfor-
mance to 104 Mbytes/sec, assuming all data
cache misses, and 189 Mbytes/sec, assuming
all data cache hits. Given the small size of data
caches in SOC communications processors,
we expect the actual achieved bandwidth to
be closer to the lower end of this range.
UNUM with data movement instructions
produced the best results: 212 Mbytes/sec.
Since the state of the event service routine fits
within a UNUM context, no state informa-
tion needs to be loaded from memory. This
explains why UNUM outperforms fast inter-
rupts with data cache hits, and it also is the
reason why the UNUM curve is unaffected
by data cache misses.

Note that for very small burst sizes,
UNUM events with PIO outperforms fast
interrupts with data movement instructions.
This is because for small bursts the overhead
of loading the event service routine state
exceeds that of performing memory-to-
memory PIO transfers.

ATM Soft-SAR
Our second benchmark measures the abili-

ty of UNUM to perform complex interface-
specific processing. For this benchmark we
selected ATM AAL5 Segmentation and
Reassembly (SAR) since it represents a class of
applications in which the processing performed
on received data depends on its content.

ATM AAL5 SAR transmit processing con-
sists of segmenting protocol data units
(PDUs) to be sent on an ATM virtual circuit
into fixed-length cells and attaching a header
to each cell. The PDU is padded to contain
an integral number of cells, and the last cell
has fields that indicate the data length, a user-
to-user byte, and a CRC-32 value. SAR
receive processing consists of reassembling
received cells into PDUs, checking the length
and CRC-32 fields, and passing the payload to
upper layers.

What makes SAR processing challenging is
that for each received ATM cell considerable
work must be performed. First, the identifier
field (VPI/VCI) in the cell header is used to

24

ARCHITECTURAL CONSIDERATIONS

IEEE MICRO

0

50

100

150

200

250

300

350

400

450

B
an

dw
id

th
 (

M
by

te
s/

se
c)

UNUM events and data movement instructions
Fast interrupts with UNUM data movement instructions (D cache hits)
Fast interrupts with UNUM data movement instructions (D cache misses)
Interrupts with UNUM data movement instructions
UNUM events with PIO

64 128 192 256 320 384 448 512
Data transfer size (bytes)

Figure 5. Data movement performance.

look up the virtual circuit that the cell belongs
to. This lookup returns a data structure that
contains a pointer to a reassembly buffer and
current CRC-32 for the packet being reassem-
bled. The payload of the cell is then append-
ed to the reassembly buffer, and the
reassembly buffer pointer and CRC-32 are
updated. Additional processing is required to
handle boundary conditions such as end of
frame and end of buffer. Due to the com-
plexity of SAR processing, most systems
implement this in custom hardware.

The ATM interface in the system we simu-
lated consisted of a physical layer interface (for
example, Utopia), a transmit and receive
FIFO, a CRC-32 calculator, and control and
status registers. The interface generates an
ATM receive event when a cell is present in the
receive FIFO and an ATM transmit event
when space exists for a cell in the transmit
FIFO. We wrote code for SAR processing on
the UNUM processor. The SAR software uses
three hardware contexts. The first performs
ATM receive event processing, the second per-
forms ATM transmit event processing, and the
third performs ATM transmit cell scheduling.

Our first experiment measured the maxi-
mum achievable throughput, assuming an infi-
nite line rate and FIFOs. Figure 6 shows the
throughput as a function of AAL5 frame size
for half-duplex transmit, half-duplex receive,
and full-duplex operation. In all three cases, the
throughput increases with frame size since the
per frame overhead is amortized over a larger
number of cells. The highest throughput we
observed was 570 Mbps, which occurs for the
half-duplex receive case. Transmit throughput
is lower because of the extra overhead associat-
ed with cell scheduling. These results show that
low-overhead event processing and high-per-
formance data movement instructions allow
UNUM to sustain a very high throughput. As
a comparison, to sustain a receive throughput
of 570 Mbps, a single context CPU would have
to service an interrupt every 750 ns.

Our second experiment measured UNUM
processor utilization and the FIFO size nec-
essary to sustain a full-duplex line rate of 25
Mbps. We measured a CPU utilization of
13.4% with a frame size of 1,536 bytes. This
means that even when transmitting and
receiving at full line rate, 86% of the CPU is
available for other processing. More impor-

tant than throughput is worst-case latency,
which determines required on-chip buffering.
Using UNUM, a 25-Mbps, full-duplex line
rate requires just a four-cell transmit and
receive FIFO.

UNUM simplifies design of communica-
tions processors, lowers their cost, and

closely integrates data movement and com-
putation, thereby enabling fly-by processing.
UNUM’s ability to perform fly-by processing
is well suited to applications such as encryp-
tion, coding, overload control, packet classi-
fication, and packet telephony. The
emergence of broadband access networks is
making these applications increasingly impor-
tant for low-cost consumer devices. We are
continuing our investigation of UNUM for
these and other applications areas. MICRO

References
1. C. Dalton, et. al., “Afterburner,” IEEE

Network, Jul. 1993, pp. 36-43.
2. H. Kanakia and D. Cheriton, “The VMP Net-

work Adaptor Board (NAB): High Perfor-
mance Network Communication for
Multiprocessors,” Proc. Symp. Communi-
cation Architectures and Protocols, ACM,
New York, 1988, pp. 175-187.

3. K.K. Ramakrishnan, “Performance Consid-
erations in Designing Network Interfaces,”
IEEE J. Selected Areas in Communications,
Vol. 11, No. 2, Feb. 1993, pp. 203-219.

4. Am79C973/Am79C975 PCnet—Fast III
Single Chip 10/100 Mbps PCI Ethernet
Controller with Integrated PHY Data Sheet,

25JANUARY–FEBRUARY 2000

600

500

400

300

200

100

0

T
hr

ou
gh

pu
t (

M
bp

s)

512 1,024 1,536 2,048 2,560 3,072
PDU size (bytes)

Receive throughput
Send throughput
Full-duplex throughput

Figure 6. Maximum ATM SAR throughput.

Advanced Micro Devices, Sunnyvale, Calif.
5. P. Druschel et al., “Network Subsystem

Design,” IEEE Network, Jul. 1993, pp. 8-17.
6. T. von Eicken et al., “U-Net: A User Level

Network Interface for Parallel and
Distributed Computing,” Proc. 15th Ann.
ACM Symp. Operating Systems Principles,
ACM, Dec. 1995, pp. 40-53.

7. Am186CC Communications Controller
User’s Manual, Advanced Micro Devices,
Sunnyvale, Calif.

8. NET+ARM Hardware Reference Guide,
NETsilicon, Waltham, Mass.

9. P.Z. Onufryk, “Euphony: A Signal Processor
for ATM,” EE Times, Jan. 20, 1997, pp. 54, 80.

10. PowerQuicc: Motorola MPC860 User
Manual, Motorola, Austin, Tex.

11. HELIUM IC-000148 Preliminary Data Sheet,
VIRATA, Cambridge, UK.

12. TS702 Advanced Communication Controller
Data Book, T.sqware Inc., Santa Clara, Calif.

Charles D. Cranor is a senior technical staff
member at AT&T Labs–Research in Florham
Park, New Jersey. His interests include net-
working, operating systems, and computer
architecture. Cranor received a bachelor’s
degree in electrical engineering from the Uni-
versity of Delaware and a master’s and doc-
torate in computer science from Washington
University in St. Louis, Missouri. He is a
member of the IEEE, ACM, and USENIX,
and a kernel developer for the open-source
BSD operating systems projects.

R. Gopalakrishnan is a senior technical staff
member at the AT&T Labs–Research in
Florham Park, New Jersey. His interests
include packet telephony systems, service dif-
ferentiation and I/O performance optimiza-
tions in server operating systems, multimedia
networking, and IP multicast. Gopalakrish-
nan received the BTech degree in electrical
engineering from IIT Kanpur in India, the
MTech degree in computer science from IIT
Delhi, and the DSc degree in computer sci-
ence from Washington University, St. Louis.
He is a member of the ACM.

Peter Z. Onufryk is a technology consultant
with AT&T Labs–Research in Florham Park,
New Jersey. He was the lead architect of two
communications processors and has worked
on a number of research and military com-
puters. Onufryk received his bachelor’s degree
in electrical engineering from Rutgers Uni-
versity, master’s in electrical engineering from
Purdue University, and PhD in electrical and
computer engineering from Rutgers Univer-
sity. He is a member of the IEEE, IEEE Com-
puter Society, and ACM.

Direct comments about this article to P.Z.
Onufryk, Room B009, AT&T Labs–Research,
180 Park Ave., Bldg. 103, Florham Park, NJ
07932; pzo@research.att.com.

26

ARCHITECTURAL CONSIDERATIONS

IEEE MICRO

COMING
NEXT
ISSUE

Hot Chips 11
is coming!

Look for IEEE Micro’s annual
Hot Chips issue in March-April
2000. In addition to the articles
selected by Guest Editor Moni-
ca Lam, you’ll find a discussion
by Broadcom Corporation’s

cofounder, CTO, and
R&D VP Henry Samueli
on the implications of
the broadband commu-
nications that will
enable the connected

home of the 21st century.

